Valerian CiobotÄf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948507/publications.pdf Version: 2024-02-01

VALEDIAN CIOROTÄE

#	Article	lF	CITATIONS
1	Raman spectroscopy in the detection of adulterated essential oils: The case of nonvolatile adulterants. Journal of Raman Spectroscopy, 2021, 52, 1055-1063.	2.5	9
2	Extraction of Inulin from Andean Plants: An Approach to Non-Traditional Crops of Ecuador. Molecules, 2020, 25, 5067.	3.8	10
3	Microbial Fe(II) oxidation by <i>Sideroxydans lithotrophicus</i> ES-1 in the presence of SchlĶppnerbrunnen fen-derived humic acids. FEMS Microbiology Ecology, 2019, 95, .	2.7	25
4	Exploratory Monitoring of the Quality and Authenticity of Commercial Honey in Ecuador. Foods, 2019, 8, 105.	4.3	29
5	Adulteration of clove essential oil: Detection using a handheld Raman spectrometer. Flavour and Fragrance Journal, 2018, 33, 184-190.	2.6	31
6	Extremophile microbiomes in acidic and hypersaline river sediments of <scp>W</scp> estern <scp>A</scp> ustralia. Environmental Microbiology Reports, 2016, 8, 58-67.	2.4	12
7	Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy. Food Chemistry, 2016, 211, 274-280.	8.2	44
8	Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp Analytical Methods, 2016, 8, 3450-3457.	2.7	55
9	Detection of counterfeit stevia products using a handheld Raman spectrometer. Vibrational Spectroscopy, 2016, 83, 126-131.	2.2	30
10	Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry. Cosmetics, 2015, 2, 162-176.	3.3	49
11	Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1. Frontiers in Microbiology, 2015, 6, 734.	3.5	42
12	Raman investigations of Upper Cretaceous phosphorite and black shale from Safaga District, Red Sea, Egypt. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 42-47.	3.9	24
13	Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area. Water Research, 2014, 63, 222-233.	11.3	25
14	Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour and Fragrance Journal, 2014, 29, 287-295.	2.6	43
15	Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods, 2014, 6, 6711-6720.	2.7	36
16	The Effect of Antimonate, Arsenate, and Phosphate on the Transformation of Ferrihydrite to Goethite, Hematite, Feroxyhyte, and Tripuhyite. Clays and Clay Minerals, 2013, 61, 11-25.	1.3	53
17	Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 697-708.	3.9	50
18	Reactions of Alkaline Minerals in the Atmosphere. Angewandte Chemie - International Edition, 2013, 52, 1410-1413.	13.8	12

#	Article	IF	CITATIONS
19	Raman and infrared spectroscopic study of synthetic ungemachite, K3Na8Fe(SO4)6(NO3)2·6H2O. Journal of Molecular Structure, 2012, 1022, 147-152.	3.6	16
20	Identification of minerals and organic materials in Middle Eocene ironstones from the Bahariya Depression in the Western Desert of Egypt by means of microâ€Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 405-410.	2.5	33
21	Pelagic boundary conditions affect the biological formation of ironâ€rich particles (iron snow) and their microbial communities. Limnology and Oceanography, 2011, 56, 1386-1398.	3.1	34
22	The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2010, 397, 2929-2937.	3.7	41
23	The Influence of Intracellular Storage Material on Bacterial Identification by means of Raman Spectroscopy. , 2010, , .		1