
Gerhard Dehm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7947912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Materialia, 2008, 56, 580-592.	7.9	441
2	In situ observation of dislocation nucleation andÂescape in a submicrometre aluminium singleÂcrystal. Nature Materials, 2009, 8, 95-100.	27.5	400
3	FIB damage of Cu and possible consequences for miniaturized mechanical tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 262-272.	5.6	386
4	Observation of Giant Diffusivity Along Dislocation Cores. Science, 2008, 319, 1646-1649.	12.6	374
5	Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Materialia, 2018, 142, 248-282.	7.9	268
6	A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films, 2009, 518, 247-256.	1.8	209
7	Trends in the Development of New Mg Alloys. Annual Review of Materials Research, 2008, 38, 505-533.	9.3	199
8	Micro-compression testing: A critical discussion of experimental constraints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 505, 79-87.	5.6	192
9	Determination of Mechanical Properties of Copper at the Micron Scale. Advanced Engineering Materials, 2006, 8, 1119-1125.	3.5	191
10	Importance and Challenges of Electrochemical <i>in Situ</i> Liquid Cell Electron Microscopy for Energy Conversion Research. Accounts of Chemical Research, 2016, 49, 2015-2022.	15.6	185
11	Bidirectional Transformation Enables Hierarchical Nanolaminate Dualâ€Phase Highâ€Entropy Alloys. Advanced Materials, 2018, 30, e1804727.	21.0	167
12	Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Progress in Materials Science, 2009, 54, 664-688.	32.8	143
13	Observations of grain-boundary phase transformations in an elemental metal. Nature, 2020, 579, 375-378.	27.8	136
14	Cyclic deformation of polycrystalline Cu films. Philosophical Magazine, 2003, 83, 693-710.	1.6	129
15	Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. Journal of Materials Research, 2015, 30, 686-698.	2.6	129
16	Superlattice effect for enhanced fracture toughness of hard coatings. Scripta Materialia, 2016, 124, 67-70.	5.2	128
17	Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model. Acta Materialia, 2010, 58, 5520-5531.	7.9	121
18	Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Materialia, 2014, 73, 240-250.	7.9	120

#	Article	IF	CITATIONS
19	Interface controlled plasticity in metals: dispersion hardening and thin film deformation. Progress in Materials Science, 2001, 46, 283-307.	32.8	118
20	Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics, 2006, 14, 1380-1385.	3.9	118
21	In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Materialia, 2007, 55, 5558-5571.	7.9	116
22	Growth and structure of copper thin films deposited on (0001) sapphire by molecular beam epitaxy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 1111-1124.	0.6	106
23	Unveiling the Re effect in Ni-based single crystal superalloys. Nature Communications, 2020, 11, 389.	12.8	101
24	Parallel glide: unexpected dislocation motion parallel to the substrate in ultrathin copper films. Acta Materialia, 2003, 51, 4471-4485.	7.9	99
25	TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1963-1968.	2.2	96
26	Small-scale plasticity in thin Cu and Al films. Microelectronic Engineering, 2003, 70, 412-424.	2.4	93
27	Work hardening in micropillar compression: In situ experiments and modeling. Acta Materialia, 2011, 59, 3825-3840.	7.9	86
28	Creep behaviour and related high temperature microstructural stability of Ti–46Al–9Nb sheet material. Intermetallics, 2005, 13, 515-524.	3.9	81
29	Growth and microstructural stability of epitaxial Al films on (0001) α-Al2O3 substrates. Acta Materialia, 2002, 50, 5021-5032.	7.9	79
30	Fracture and Delamination of Chromium Thin Films on Polymer Substrates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 870-875.	2.2	79
31	Crystal rotation in Cu single crystal micropillars: <i>In situ</i> Laue and electron backscatter diffraction. Applied Physics Letters, 2008, 92, .	3.3	77
32	The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model. Acta Materialia, 2015, 89, 278-289.	7.9	76
33	Gold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity. ACS Catalysis, 2017, 7, 5699-5705.	11.2	76
34	Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy. Acta Materialia, 2020, 185, 45-54.	7.9	76
35	On the importance of sample compliance in uniaxial microtesting. Scripta Materialia, 2009, 60, 148-151.	5.2	75
36	Quasi-crystalline grain-boundary phase in the magnesium die-cast alloy ZA85. Scripta Materialia, 2001, 45, 517-524.	5.2	74

#	Article	IF	CITATIONS
37	Electron-energy-loss spectroscopy studies of Cu-α-Al2O3interfaces grown by molecular beam epitaxy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 439-465.	0.6	72
38	In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals. Acta Materialia, 2010, 58, 4772-4782.	7.9	72
39	Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surface and Coatings Technology, 2009, 204, 878-881.	4.8	71
40	Iron Aluminides. Annual Review of Materials Research, 2019, 49, 297-326.	9.3	71
41	Mechanical Size-Effects in Miniaturized and Bulk Materials. Advanced Engineering Materials, 2006, 8, 1033-1045.	3.5	70
42	Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nature Communications, 2021, 12, 5518.	12.8	70
43	Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Materialia, 2006, 54, 3863-3870.	7.9	68
44	Crystal–Glass Highâ€Entropy Nanocomposites with Near Theoretical Compressive Strength and Large Deformability. Advanced Materials, 2020, 32, e2002619.	21.0	66
45	Nanometer-scaled lamellar microstructures in Ti–45Al–7.5Nb–(0; 0.5)C alloys and their influence on hardness. Intermetallics, 2008, 16, 868-875.	3.9	65
46	Strain-Induced Asymmetric Line Segregation at Faceted Si Grain Boundaries. Physical Review Letters, 2018, 121, 015702.	7.8	65
47	Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure. ACS Nano, 2021, 15, 16607-16615.	14.6	65
48	In situ transmission electron microscopy study of dislocations in a polycrystalline Cu thin film constrained by a substrate. Applied Physics Letters, 2000, 77, 1126-1128.	3.3	63
49	Yield stress influenced by the ratio of wire diameter to grain size – a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires. Philosophical Magazine, 2012, 92, 3243-3256.	1.6	63
50	Growth and structure of internal Cu/Al2O3 and Cu/Ti/Al2O3 interfaces11Paper presented at Sympos. Synergistic Synthesis of Inorganic Materials, March 1996, Schloß Ringberg, Germany Acta Materialia, 1998, 46, 759-772.	7.9	61
51	Deformationâ€Induced Martensite: A New Paradigm for Exceptional Steels. Advanced Materials, 2016, 28, 7753-7757.	21.0	61
52	Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure. Acta Materialia, 2018, 156, 86-96.	7.9	58
53	Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEM. International Journal of Materials Research, 2009, 100, 1074-1087.	0.3	57
54	Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Materialia, 2012, 60, 2397-2406.	7.9	57

#	Article	IF	CITATIONS
55	Size effect in bi-crystalline micropillars with a penetrable high angle grain boundary. Acta Materialia, 2017, 129, 312-320.	7.9	57
56	Interfacial nanophases stabilize nanotwins in high-entropy alloys. Acta Materialia, 2020, 185, 218-232.	7.9	57
57	Electron Energy-Loss Near-Edge Structure of Metal-Alumina Interfaces. Microscopy Microanalysis Microstructures, 1995, 6, 19-31.	0.4	57
58	The influence of chromium addition on the toughness of γ-Niα-Al2O3 interfaces. Acta Materialia, 1997, 45, 3503-3513.	7.9	56
59	In situ transmission electron microscopy study of thermal-stress-induced dislocations in a thin Cu film constrained by a Si substrate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 468-472.	5.6	56
60	On the influence of microcantilever pre-crack geometries on the apparent fracture toughness of brittle materials. Acta Materialia, 2017, 136, 281-287.	7.9	53
61	Formation of eta carbide in ferrous martensite by room temperature aging. Acta Materialia, 2018, 158, 297-312.	7.9	52
62	Impact of instrumental constraints and imperfections on the dislocation structure in micron-sized Cu compression pillars. Acta Materialia, 2011, 59, 5618-5626.	7.9	51
63	Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Materialia, 2017, 129, 91-97.	7.9	51
64	On the segregation of Re at dislocations in the $\hat{I}^{3'}$ phase of Ni-based single crystal superalloys. Materialia, 2018, 4, 109-114.	2.7	51
65	Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 124-129.	5.6	50
66	Stress, Sheet Resistance, and Microstructure Evolution of Electroplated Cu Films During Self-Annealing. IEEE Transactions on Device and Materials Reliability, 2010, 10, 47-54.	2.0	50
67	Influence of impurity elements on the nucleation and growth of Si in high purity melt-spun Al–Si-based alloys. Philosophical Magazine, 2012, 92, 3789-3805.	1.6	50
68	Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. Acta Materialia, 2015, 83, 318-332.	7.9	50
69	Synthesis of analytical and high-resolution transmission electron microscopy to determine the interface structure of Cu/Al2O3. Ultramicroscopy, 1997, 67, 207-217.	1.9	49
70	Microstructure evolution and mechanical properties of an intermetallic Ti-43.5Al-4Nb-1Mo-0.1B alloy after ageing below the eutectoid temperature. International Journal of Materials Research, 2011, 102, 703-708.	0.3	49
71	Microscale Fracture Behavior of Single Crystal Silicon Beams at Elevated Temperatures. Nano Letters, 2016, 16, 7597-7603.	9.1	49
72	Advanced nanomechanics in the TEM: effects of thermal annealing on FIB prepared Cu samples. Philosophical Magazine, 2012, 92, 3269-3289.	1.6	48

#	Article	IF	CITATIONS
73	Dislocation-induced crystal rotations in micro-compressed single crystal copper columns. Journal of Materials Science, 2008, 43, 2503-2506.	3.7	47
74	Kinetics and crystallization path of a Fe-based metallic glass alloy. Acta Materialia, 2017, 127, 341-350.	7.9	47
75	Effect of heat-treatments and hot-isostatic pressing on phase transformation and microstructure in a β/B2 containing γ-TiAl based alloy. Scripta Materialia, 2000, 42, 1065-1070.	5.2	46
76	Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scripta Materialia, 2017, 129, 52-55.	5.2	46
77	Microstructure and tribological properties of Ni-based claddings on Cu substrates. Wear, 1999, 225-229, 18-26.	3.1	45
78	Microstructural stability and creep behavior of a lamellar γ-TiAl based alloy with extremely fine lamellar spacing. Intermetallics, 2002, 10, 459-466.	3.9	45
79	Internal and external stresses: In situ TEM compression of Cu bicrystals containing a twin boundary. Scripta Materialia, 2015, 100, 94-97.	5.2	45
80	Retrieval of crystal defect structures from HREM images by simulated evolution II. Experimental image evaluation. Ultramicroscopy, 1996, 65, 217-228.	1.9	43
81	Dislocation storage in single slip-oriented Cu micro-tensile samples: new insights via X-ray microdiffraction. Philosophical Magazine, 2011, 91, 1256-1264.	1.6	43
82	An elevated temperature study of a Ti adhesion layer on polyimide. Thin Solid Films, 2013, 531, 354-361.	1.8	43
83	Laser cladding of Co-based hardfacing on Cu substrate. Journal of Materials Science, 2002, 37, 5345-5353.	3.7	41
84	Precipitation processes in a Mg–Zn–Sn alloy studied by TEM and SAXS. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 158-165.	5.6	41
85	Dislocation interaction and twinning-induced plasticity in face-centered cubic Fe-Mn-C micro-pillars. Acta Materialia, 2017, 132, 162-173.	7.9	41
86	Dislocation slip transmission through a coherent Σ3{111} copper twin boundary: Strain rate sensitivity, activation volume and strength distribution function. Acta Materialia, 2018, 161, 412-419.	7.9	41
87	Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiNx coatings prepared by magnetron sputtering. Thin Solid Films, 2005, 473, 114-122.	1.8	40
88	Segregation-Induced Nanofaceting Transition at an Asymmetric Tilt Grain Boundary in Copper. Physical Review Letters, 2018, 121, 255502.	7.8	40
89	Size-independent stresses in Al thin films thermally strained down to â~'100°C. Acta Materialia, 2007, 55, 1941-1946.	7.9	38
90	Deformation mechanisms in micron-sized PST TiAl compression samples: Experiment and model. Acta Materialia, 2011, 59, 3410-3421.	7.9	38

#	Article	lF	CITATIONS
91	Expected and unexpected plastic behavior at the micron scale: An in situ μLaue tensile study. Acta Materialia, 2012, 60, 1252-1258.	7.9	38
92	Fracture toughness of Mo2BC thin films: Intrinsic toughness versus system toughening. Materials and Design, 2018, 154, 20-27.	7.0	38
93	Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 398-405.	5.6	37
94	Oxygen-mediated deformation and grain refinement in Cu-Fe nanocrystalline alloys. Acta Materialia, 2019, 166, 281-293.	7.9	37
95	A quantitative study of the hardness of a superhard nanocrystalline titanium nitride/silicon nitride coating. Scripta Materialia, 2005, 52, 1269-1274.	5.2	36
96	Microcompression and cyclic deformation behaviors of coaxial copper bicrystals with a single twin boundary. Scripta Materialia, 2013, 69, 199-202.	5.2	36
97	Importance of dislocation pile-ups on the mechanical properties and the Bauschinger effect in microcantilevers. Journal of Materials Research, 2015, 30, 791-797.	2.6	36
98	Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments. Scripta Materialia, 2017, 127, 76-78.	5.2	36
99	Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-hydride?. Scripta Materialia, 2020, 178, 39-43.	5.2	36
100	Channel cracking of β-NiAl thin films on Si substrates. Acta Materialia, 2004, 52, 2325-2336.	7.9	35
101	In Situ TEM Microcompression of Single and Bicrystalline Samples: Insights and Limitations. Jom, 2015, 67, 1704-1712.	1.9	35
102	Dislocation plasticity in FeCoCrMnNi high-entropy alloy: quantitative insights from <i>in situ</i> transmission electron microscopy deformation. Materials Research Letters, 2020, 8, 216-224.	8.7	35
103	On the origin of acoustic emission during room temperature compressive deformation of a γ-TiAl based alloy. Intermetallics, 2000, 8, 823-830.	3.9	34
104	Experimental studies on epitaxially grown TiN and VN films. Thin Solid Films, 2007, 516, 369-373.	1.8	34
105	Cyclic bending experiments on free-standing Cu micron lines observed by electron backscatter diffraction. Acta Materialia, 2015, 83, 460-469.	7.9	34
106	Microstructural evolution and solid state dewetting of epitaxial Al thin films on sapphire (α-Al2O3). Acta Materialia, 2017, 133, 356-366.	7.9	34
107	Symbiotic crystal-glass alloys via dynamic chemical partitioning. Materials Today, 2021, 51, 6-14.	14.2	34
108	In situ TEM observation of dislocation motion in thermally strained Al nanowires. Acta Materialia, 2002, 50, 5033-5047.	7.9	33

Gerhard Dehm

#	Article	IF	CITATIONS
109	Bonding at copper–alumina interfaces established by different surface treatments: a critical review. Journal of Materials Science, 2006, 41, 5161-5168.	3.7	33
110	Visualizing the Behavior of Dislocations—Seeing is Believing. MRS Bulletin, 2008, 33, 122-131.	3.5	33
111	Tensile behaviour of micro-sized copper wires studied using a novel fibre tensile module. International Journal of Materials Research, 2008, 99, 716-724.	0.3	32
112	Damage evolution during cyclic tension–tension loading of micron-sized Cu lines. Acta Materialia, 2014, 67, 297-307.	7.9	31
113	Advances in in situ nanomechanical testing. MRS Bulletin, 2019, 44, 438-442.	3.5	31
114	Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity. International Journal of Materials Research, 2002, 93, 383-391.	0.8	31
115	Investigation of the fatigue behavior of Al thin films with different microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7757-7763.	5.6	30
116	On the nature of twin boundary-associated strengthening in Fe-Mn-C steel. Scripta Materialia, 2018, 156, 27-31.	5.2	30
117	Experimental conditions affecting the measured fracture toughness at the microscale: Notch geometry and crack extension measurement. Materials and Design, 2020, 191, 108582.	7.0	30
118	Effects of thickness on the characteristic length scale of dislocation plasticity in Ag thin films. Acta Materialia, 2001, 49, 3597-3607.	7.9	29
119	Are Mo2BC nanocrystalline coatings damage resistant? Insights from comparative tension experiments. Surface and Coatings Technology, 2016, 289, 213-218.	4.8	29
120	Atomic scale configuration of planar defects in the Nb-rich C14 Laves phase NbFe2. Acta Materialia, 2020, 183, 362-376.	7.9	29
121	Crystal structure and composition dependence of mechanical properties of single-crystalline NbCo2 Laves phase. Acta Materialia, 2020, 184, 151-163.	7.9	29
122	Massive interstitial solid solution alloys achieve near-theoretical strength. Nature Communications, 2022, 13, 1102.	12.8	29
123	Equilibrium Amorphous Silicon–Calcium–Oxygen Films at Interfaces in Copper–Alumina Composites Prepared by Melt Infiltration. Journal of the American Ceramic Society, 2001, 84, 623-630.	3.8	28
124	Reducing cohesion of metal powders for additive manufacturing by nanoparticle dry-coating. Powder Technology, 2021, 379, 585-595.	4.2	28
125	Nanoindentation popâ€in in oxides at room temperature: Dislocation activation or crack formation?. Journal of the American Ceramic Society, 2021, 104, 4728-4741.	3.8	28
126	In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation. Journal of Materials Science, 2006, 41, 4484-4489.	3.7	27

#	Article	IF	CITATIONS
127	Strain compensation by twinning in Au thin films: Experiment and model. Acta Materialia, 2007, 55, 6659-6665.	7.9	27
128	Stress-controlled fatigue behaviour of micro-sized polycrystalline copper wires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 515, 71-78.	5.6	27
129	The effect of film thickness variations in periodic cracking: Analysis and experiments. Surface and Coatings Technology, 2011, 206, 1830-1836.	4.8	27
130	In Situ µLaue: Instrumental Setup for the Deformation of Micron Sized Samples. Advanced Engineering Materials, 2011, 13, 837-844.	3.5	27
131	Investigation of reversible plasticity in a micron-sized, single crystalline copper bending beam by X-rayμLaue diffraction. Philosophical Magazine, 2012, 92, 3231-3242.	1.6	27
132	Influence of inclined twin boundaries on the deformation behavior of Cu micropillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 65-70.	5.6	27
133	Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures. Acta Materialia, 2015, 93, 175-186.	7.9	27
134	Hydrogen embrittlement of tungsten induced by deuterium plasma: Insights from nanoindentation tests. Journal of Materials Research, 2018, 33, 3530-3536.	2.6	27
135	Measurement of coherency states of metal—ceramic interfaces by HREM image processing. Physica Status Solidi A, 1995, 150, 77-87.	1.7	26
136	Dynamic observation of Al thin films plastically strained in a TEM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 463-467.	5.6	26
137	Influence of external and internal length scale on the flow stress of copper. International Journal of Materials Research, 2007, 98, 1047-1053.	0.3	26
138	Structural characterization of a Cu/MgO(001) interface using CS-corrected HRTEM. Thin Solid Films, 2010, 519, 1662-1667.	1.8	26
139	Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics, 2010, 18, 509-517.	3.9	26
140	Formation of dislocation networks in a coherent Cu Σ3(1 1 1) twin boundary. Scripta Materialia, 2015, 102, 71-74.	5.2	26
141	Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses. Scientific Reports, 2016, 6, 36556.	3.3	26
142	Coccospheres confer mechanical protection: New evidence for an old hypothesis. Acta Biomaterialia, 2016, 42, 258-264.	8.3	26
143	Fracture toughness of intermetallic Cu6Sn5 in lead-free solder microelectronics. Scripta Materialia, 2016, 123, 38-41.	5.2	26
144	Aggregation control of Ru and Ir nanoparticles by tunable aryl alkyl imidazolium ionic liquids. Nanoscale, 2019, 11, 4073-4082.	5.6	26

#	Article	IF	CITATIONS
145	Effect of Oxygen on Highâ€temperature Phase Equilibria in Ternary Tiâ€Alâ€Nb Alloys. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1151-1156.	1.2	26
146	Novel temperature dependent tensile test of freestanding copper thin film structures. Review of Scientific Instruments, 2012, 83, 064702.	1.3	25
147	Interplay of Chemistry and Faceting at Grain Boundaries in a Model Al Alloy. Physical Review Letters, 2020, 124, 106102.	7.8	25
148	Nanotribology in austenite: Plastic plowing and crack formation. Wear, 2015, 338-339, 436-440.	3.1	24
149	Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Materials and Design, 2018, 145, 116-121.	7.0	24
150	Micro fracture investigations of white etching layers. Materials and Design, 2019, 180, 107892.	7.0	24
151	Synthesis, microstructure, and hardness of rapidly solidified Cu-Cr alloys. Journal of Alloys and Compounds, 2019, 794, 203-209.	5.5	24
152	Dopant-segregation to grain boundaries controls electrical conductivity of n-type NbCo(Pt)Sn half-Heusler alloy mediating thermoelectric performance. Acta Materialia, 2021, 217, 117147.	7.9	24
153	Aluminum depletion induced by co-segregation of carbon and boron in a bcc-iron grain boundary. Nature Communications, 2021, 12, 6008.	12.8	24
154	A microindentation method for estimating interfacial shear strength and its use in studying the influence of titanium transition layers on the interface strength of epitaxial copper films on sapphire. Acta Materialia, 1997, 45, 489-499.	7.9	23
155	Transition from shear to stress-assisted diffusion of copper–chromium nanolayered thin films at elevated temperatures. Acta Materialia, 2015, 100, 73-80.	7.9	23
156	Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper. Scripta Materialia, 2017, 138, 88-91.	5.2	23
157	Nano-laminated thin film metallic glass design for outstanding mechanical properties. Scripta Materialia, 2018, 155, 73-77.	5.2	23
158	Size dependent strength, slip transfer and slip compatibility in nanotwinned silver. Acta Materialia, 2020, 184, 120-131.	7.9	23
159	On the role of twinning during room temperature deformation of Î ³ -TiAl based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 177-183.	5.6	22
160	Micron-sized fracture experiments on amorphous SiOx films and SiOx/SiNx multi-layers. Thin Solid Films, 2010, 518, 5796-5801.	1.8	22
161	Insights into the atomic and electronic structure triggered by ordered nitrogen vacancies in CrN. Physical Review B, 2013, 87, .	3.2	22
162	The peculiarity of the metal-ceramic interface. Scientific Reports, 2015, 5, 11460.	3.3	22

#	Article	IF	CITATIONS
163	Fracture behavior of nanostructured heavily cold drawn pearlitic steel wires before and after annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 164-171.	5.6	22
164	Approaches to Measure the Resistivity of Grain Boundaries in Metals with High Sensitivity and Spatial Resolution: A Case Study Employing Cu. ACS Applied Electronic Materials, 2020, 2, 2049-2056.	4.3	22
165	Combinatorial exploration of B2/L21 precipitation strengthened AlCrFeNiTi compositionally complex alloys. Journal of Alloys and Compounds, 2021, 853, 156111.	5.5	22
166	Sample Preparation by Metallography and Focused Ion Beam for Nanomechanical Testing. Praktische Metallographie/Practical Metallography, 2012, 49, 343-355.	0.3	22
167	Strategies for damage tolerance enhancement in metal/ceramic thin films: Lessons learned from Ti/TiN. Acta Materialia, 2022, 228, 117777.	7.9	22
168	Transmission electron microscopy of fluorapatite-gelatine composite particles prepared using focused ion beam milling. Journal of Microscopy, 2004, 214, 208-212.	1.8	21
169	Electrical properties and structure of grain boundaries in n-conducting BaTiO3 ceramics. Journal of the European Ceramic Society, 2011, 31, 763-771.	5.7	21
170	Deformation twinning in Ni–Mn–Ga micropillars with 10M martensite. Journal of Applied Physics, 2009, 106, 53906.	2.5	20
171	Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Materialia, 2016, 115, 76-82.	7.9	20
172	Atomistic deformation behavior of single and twin crystalline Cu nanopillars with preexisting dislocations. Acta Materialia, 2020, 197, 54-68.	7.9	20
173	Microstructure and Phase Evolution of Niobium-Aluminide–Alumina Composites Prepared by Melt-Infiltration. Physica Status Solidi A, 1998, 166, 241-255.	1.7	19
174	Influence of the indenter tip geometry and environment on the indentation modulus of enamel. Journal of Materials Research, 2009, 24, 616-625.	2.6	19
175	Strain-induced phase transformation of a thin Co film on flexible substrates. Acta Materialia, 2016, 121, 227-233.	7.9	19
176	Annealing induced void formation in epitaxial Al thin films on sapphire (α-Al2O3). Acta Materialia, 2017, 140, 355-365.	7.9	19
177	Strain rate dependent deformation behavior of BCC-structured Ti29Zr24Nb23Hf24 high entropy alloy at elevated temperatures. Journal of Alloys and Compounds, 2022, 891, 161859.	5.5	19
178	Strained thin copper films as model catalysts in the materials gap. Catalysis Letters, 2005, 102, 91-97.	2.6	18
179	Pre- and post-buckling behavior of bi-crystalline micropillars: Origin and consequences. Acta Materialia, 2017, 124, 195-203.	7.9	18
180	Can micro-compression testing provide stress–strain data for thin films?. Thin Solid Films, 2009, 518, 1517-1521.	1.8	17

#	Article	IF	CITATIONS
181	Microstructure and adhesion of as-deposited and annealed Cu/Ti films on polyimide. International Journal of Materials Research, 2011, 102, 1-6.	0.3	17
182	In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys. Acta Materialia, 2017, 138, 42-51.	7.9	17
183	Initiation and stagnation of room temperature grain coarsening in cyclically strained gold films. Acta Materialia, 2019, 169, 99-108.	7.9	17
184	Interfacial fracture toughness of sintered hybrid silver interconnects. Journal of Materials Science, 2020, 55, 2891-2904.	3.7	17
185	Tantalum and zirconium induced structural transitions at complex [111] tilt grain boundaries in copper. Acta Materialia, 2020, 190, 93-104.	7.9	17
186	Free, flexible and fast: Orientation mapping using the multi-core and GPU-accelerated template matching capabilities in the Python-based open source 4D-STEM analysis toolbox Pyxem. Ultramicroscopy, 2022, 237, 113517.	1.9	17
187	Dual phase patterning during a congruent grain boundary phase transition in elemental copper. Nature Communications, 2022, 13, .	12.8	17
188	Obtaining different orientation relationships for Cu films grown on (0001) α-Al ₂ O ₃ substrates by magnetron sputtering. International Journal of Materials Research, 2005, 96, 249-254.	0.8	16
189	Interface failure and adhesion measured by focused ion beam cutting of metal–polymer interfaces. Philosophical Magazine Letters, 2011, 91, 530-536.	1.2	16
190	Modifying the nanostructure and the mechanical properties of Mo2BC hard coatings: Influence of substrate temperature during magnetron sputtering. Materials and Design, 2018, 142, 203-211.	7.0	16
191	Effect of size and domain orientation on strength of Barium Titanate. Scripta Materialia, 2020, 182, 68-73.	5.2	16
192	Thermal stability of Ti and Pt nanowires manufactured by Ga+ focused ion beam. Journal of Microscopy, 2004, 214, 252-260.	1.8	15
193	Precipitation hardening in Mg-Z-Sn alloys with minor additions of Ca and Si. International Journal of Materials Research, 2005, 96, 1081-1087.	0.8	15
194	Interface structure of epitaxial (111) VN films on (111) MgO substrates. Thin Solid Films, 2008, 517, 1177-1181.	1.8	15
195	Cyclic loading behavior of micro-sized polycrystalline copper wires. Procedia Engineering, 2010, 2, 925-930.	1.2	15
196	Robust mechanical performance of chromium-coated polyethylene terephthalate over a broad range of conditions. Philosophical Magazine, 2012, 92, 3346-3362.	1.6	15
197	Adhesion measurement of a buried Cr interlayer on polyimide. Philosophical Magazine, 2015, 95, 1982-1991.	1.6	15
198	Unraveling indentation-induced slip steps in austenitic stainless steel. Materials and Design, 2019, 183, 108169.	7.0	15

Gerhard Dehm

#	Article	IF	CITATIONS
199	Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo ₂ Laves phase polytypes studied by nanoindentation. Journal of Materials Research, 2020, 35, 185-195.	2.6	15
200	Scratch hardness at a small scale: Experimental methods and correlation to nanoindentation hardness. Tribology International, 2021, 163, 107168.	5.9	15
201	Influence of tantalum and silver interlayers on thermal stress evolution in copper thin films on silicon substrates. Scripta Materialia, 2004, 50, 733-737.	5.2	14
202	N-K electron energy-loss near-edge structures for TiN/VN layers: an ab initio and experimental study. Analytical and Bioanalytical Chemistry, 2008, 390, 1447-1453.	3.7	14
203	On the limits of the interfacial yield model for fragmentation testing of brittle films on polymer substrates. Philosophical Magazine, 2012, 92, 3363-3380.	1.6	14
204	Elastoplastic buckling as source of misinterpretation of micropillar tests. Acta Materialia, 2013, 61, 4996-5007.	7.9	14
205	Diffusive and massive phase transformations in Ti–Al–Nb alloys – Modelling and experiments. Intermetallics, 2013, 38, 126-138.	3.9	14
206	Intermetallic phase selection during homogenization for AA6082 alloy. Philosophical Magazine, 2014, 94, 830-846.	1.6	14
207	In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys. Nature Communications, 2018, 9, 946.	12.8	14
208	Atomic level bonding mechanism in steel/aluminum joints produced by cold pressure welding. Materialia, 2019, 7, 100396.	2.7	14
209	Automated Crystal Orientation Mapping by Precession Electron Diffraction-Assisted Four-Dimensional Scanning Transmission Electron Microscopy Using a Scintillator-Based CMOS Detector. Microscopy and Microanalysis, 2021, 27, 1102-1112.	0.4	14
210	Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Physical Review Materials, 2018, 2, .	2.4	14
211	Nanotribology in austenite: Normal force dependence. Wear, 2015, 338-339, 430-435.	3.1	13
212	Micro-tension study of miniaturized Cu lines at variable temperatures. Acta Materialia, 2015, 92, 243-254.	7.9	13
213	Sulfur – induced embrittlement in high-purity, polycrystalline copper. Acta Materialia, 2018, 156, 64-75.	7.9	13
214	Electronic structure based design of thin film metallic glasses with superior fracture toughness. Materials and Design, 2020, 186, 108327.	7.0	13
215	Thin-Film Microtensile-Test Structures for High-Throughput Characterization of Mechanical Properties. ACS Combinatorial Science, 2020, 22, 142-149.	3.8	13
216	Quantification of irradiation damage generated during HRTEM with 1250 keV electrons. Ultramicroscopy, 1996, 63, 49-55.	1.9	12

#	Article	IF	CITATIONS
217	In Situ Study of γâ€TiAl Lamellae Formation in Supersaturated α ₂ â€Ti ₃ Al Grains. Advanced Engineering Materials, 2012, 14, 299-303.	3.5	12
218	In–situ TEM study of diffusion kinetics and electron irradiation effects on the Cr phase separation of a nanocrystalline Cu–4 at.% Cr thin film alloy. Journal of Alloys and Compounds, 2017, 695, 1583-1590.	5.5	12
219	Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials. Journal of Nuclear Materials, 2019, 524, 135-140.	2.7	12
220	Microstructure evolution and thermal stability of equiatomic CoCrFeNi films on (0001) α-Al2O3. Acta Materialia, 2020, 200, 908-921.	7.9	12
221	Insight into indentation-induced plastic flow in austenitic stainless steel. Journal of Materials Science, 2020, 55, 9095-9108.	3.7	12
222	Time-dependent plasticity in silicon microbeams mediated by dislocation nucleation. Proceedings of the United States of America, 2020, 117, 16864-16871.	7.1	12
223	Nanocrystalline equiatomic CoCrFeNi alloy thin films: Are they single phase fcc?. Surface and Coatings Technology, 2021, 410, 126945.	4.8	12
224	Faceting diagram for Ag segregation induced nanofaceting at an asymmetric Cu tilt grain boundary. Acta Materialia, 2021, 214, 116960.	7.9	12
225	Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2021, 203, 114044.	5.2	12
226	Ultralong one-dimensional plastic zone created in aluminum underneath a nanoscale indent. Acta Materialia, 2022, 232, 117944.	7.9	12
227	Dislocation plasticity of Al film on polyimide investigated by cross-sectional in situ transmission electron microscopy straining. Scripta Materialia, 2011, 65, 456-459.	5.2	11
228	Heat-Induced Phase Transformation of Three-Dimensional Nb3O7(OH) Superstructures: Effect of Atmosphere and Electron Beam. Crystal Growth and Design, 2016, 16, 4309-4317.	3.0	11
229	Nanostructure of and structural defects in a Mo2BC hard coating investigated by transmission electron microscopy and atom probe tomography. Journal of Applied Physics, 2017, 122, .	2.5	11
230	Plastic deformation of tungsten due to deuterium plasma exposure: Insights from micro-compression tests. Scripta Materialia, 2019, 162, 132-135.	5.2	11
231	Mechanical spectroscopy of a high-Nb-bearingî ³ -TiAl-based alloy with near-gamma and fully lamellar microstructure. Philosophical Magazine Letters, 2004, 84, 383-393.	1.2	10
232	Conventional TEM Investigation Of The FIB Damage In Copper. Microscopy and Microanalysis, 2007, 13, 100-101.	0.4	10
233	Microstructure and mechanical properties in the thin film system Cu-Zr. Thin Solid Films, 2018, 645, 193-202.	1.8	10
234	Synthesis and mechanical testing of grain boundaries at the micro and sub-micro scale. Materialpruefung/Materials Testing, 2019, 61, 5-18.	2.2	10

#	Article	IF	CITATIONS
235	How tensile tests allow a screening of the fracture toughness of hard coatings. Surface and Coatings Technology, 2020, 390, 125645.	4.8	10
236	On the fracture behavior of Cr2AlC coatings. Materials and Design, 2021, 206, 109757.	7.0	10
237	Formation and interface structure of TiC particles in dispersion-strengthened Cu alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 1531-1554.	0.6	9
238	Computational Modeling and Experimental Study of the Deformation Behavior of Î ³ -TiAl-Based Alloys. Advanced Engineering Materials, 2000, 2, 662-666.	3.5	9
239	Influence of Film/Substrate Interface Structure on Plasticity in Metal Thin Films. Materials Research Society Symposia Proceedings, 2001, 673, 1.	0.1	9
240	Size effects in the plastic deformation of NiAl thin films. International Journal of Materials Research, 2004, 95, 769-778.	0.8	9
241	Microstructure of Alumina Composites Containing Niobium and Niobium Aluminides. Journal of the American Ceramic Society, 2000, 83, 397-402.	3.8	9
242	Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al–3wt.%Cu alloy. Journal of Alloys and Compounds, 2014, 600, 43-50.	5.5	9
243	Crack deflection in multi-layered four-point bending samples. International Journal of Fracture, 2014, 190, 167-176.	2.2	9
244	Downscaling metal-dielectric interface fracture experiments to sub-micron dimensions: A feasibility study using TEM. Surface and Coatings Technology, 2015, 270, 1-7.	4.8	9
245	How close can indents be placed without risking an erroneous pop-in statistics?. Materialia, 2019, 7, 100378.	2.7	9
246	Microscale plastic anisotropy of basal and pyramidal I slip in pure magnesium tested in shear. Materialia, 2020, 14, 100932.	2.7	9
247	In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science, 2021, 56, 8732-8744.	3.7	9
248	On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations. Journal of the Mechanics and Physics of Solids, 2021, 154, 104511.	4.8	9
249	Electron-energy-loss spectroscopy studies of Cu- alpha-Al2O3 interfaces grown by molecular beam epitaxy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 439-465.	0.6	9
250	Dislocation-mediated electronic conductivity in rutile. Materials Today Nano, 2022, 17, 100171.	4.6	9
251	Electron Energy-Loss Spectroscopy at Cu/Al ₂ O ₃ and Ti/Al ₂ O ₃ Interfaces. Materials Science Forum, 1996, 207-209, 181-184.	0.3	8
252	A New Type of Dislocation Mechanism in Ultrathin Copper Films. Materials Research Society Symposia Proceedings, 2001, 695, 1.	0.1	8

#	Article	IF	CITATIONS
253	Pipe-diffusion ripening of Si precipitates in Al-0.5%Cu-1%Si thin films. Philosophical Magazine, 2005, 85, 3541-3552.	1.6	8
254	Microplasticity phenomena in thermomechanically strained nickel thin films. Journal of Materials Science, 2010, 45, 3874-3881.	3.7	8
255	Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations. Ultramicroscopy, 2017, 178, 96-104.	1.9	8
256	Thermal stability of nanocomposite Mo2BC hard coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2018, 349, 378-383.	4.8	8
257	On the commensuration of plastic plowing at the microscale. Tribology International, 2020, 151, 106477.	5.9	8
258	Strain Rate Dependence of the Deformation Mechanisms in a Fully Lamellar γ-TiAl-Based Alloy. International Journal of Materials Research, 2002, 93, 180-185.	0.8	7
259	Can local hot spots induce α2/γ lamellae during incomplete massive transformation of γ-TiAl alloys?. Intermetallics, 2010, 18, 972-976.	3.9	7
260	Grain resolved orientation changes and texture evolution in a thermally strained Al film on Si substrate. Surface and Coatings Technology, 2011, 206, 1850-1854.	4.8	7
261	Mechanical and chemical investigation of the interface between tungsten-based metallizations and annealed borophosphosilicate glass. Thin Solid Films, 2015, 583, 170-176.	1.8	7
262	Influence of initial microstructure on thermomechanical fatigue behavior of Cu films on substrates. Microelectronic Engineering, 2015, 137, 5-10.	2.4	7
263	Effect of annealing on the size dependent deformation behavior of thin cobalt films on flexible substrates. Thin Solid Films, 2017, 624, 34-40.	1.8	7
264	Beam-induced atomic migration at Ag-containing nanofacets at an asymmetric Cu grain boundary. Journal of Materials Research, 2017, 32, 968-982.	2.6	7
265	Au–Sn solders applied in transient liquid phase bonding: Microstructure and mechanical behavior. Materialia, 2019, 8, 100503.	2.7	7
266	Review on Quantum Mechanically Guided Design of Ultra-Strong Metallic Glasses. Frontiers in Materials, 2020, 7, .	2.4	7
267	A Mechanical Method for Preparing TEM Samples from Brittle Films on Compliant Substrates. Praktische Metallographie/Practical Metallography, 2011, 48, 408-413.	0.3	7
268	Deformation and phase transformation in polycrystalline cementite (Fe3C) during single- and multi-pass sliding wear. Acta Materialia, 2022, 227, 117694.	7.9	7
269	Observations of Dislocation Motion and Stress Inhomogeneities in a Thin Copper Film. Materials Research Society Symposia Proceedings, 2001, 673, 1.	0.1	6
270	Plasticity-Related Phenomena in Metallic Films on Substrates. Materials Research Society Symposia Proceedings, 2003, 779, 421.	0.1	6

#	Article	IF	CITATIONS
271	In-Situ TEM Study of Plastic Stress Relaxation Mechanisms and Interface Effects in Metallic Films. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	6
272	Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings. International Journal of Materials Research, 2006, 97, 689-698.	0.3	6
273	Dynamical growth of Cu–Pt nanowires with a nanonecklace morphology. Nanotechnology, 2007, 18, 415601.	2.6	6
274	Interface fracture and chemistry of a tungsten-based metallization on borophosphosilicate glass. Philosophical Magazine, 2015, 95, 1967-1981.	1.6	6
275	On pinning-depinning and microkink-flow in solid state dewetting: Insights by in-situ ESEM on Al thin films. Acta Materialia, 2019, 165, 153-163.	7.9	6
276	Early stage phase separation of AlCoCr0.75Cu0.5FeNi high-entropy powder at the nanoscale. Journal of Alloys and Compounds, 2020, 820, 153149.	5.5	6
277	Investigation of single asperity wear at the microscale in an austenitic steel. Wear, 2020, 452-453, 203289.	3.1	6
278	Influence of Ti3Ni4 precipitates on the indentation-induced two-way shape-memory effect in Nickel-Titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139373.	5.6	6
279	Influence of strain rate on the activation of {110}, {112}, {123} slip in ferrite of DP800. Materialia, 2021, 15, 100983.	2.7	6
280	Mapping the mechanical properties in nitride coatings at the nanometer scale. Acta Materialia, 2020, 194, 343-353.	7.9	6
281	Microstructure and residual stress evolution in nanocrystalline Cu-Zr thin films. Journal of Alloys and Compounds, 2022, 896, 162799.	5.5	6
282	Effect of composition and nanostructure on the mechanical properties and thermal stability of Zr100-xCux thin film metallic glasses. Materials and Design, 2022, 219, 110752.	7.0	6
283	Microstructure of Physical Vapour Deposited Ti-Si-N Coatings. Materials Research Society Symposia Proceedings, 2001, 704, 731.	0.1	5
284	Combined ab-initio and N-K, Ti-L ₂ ,3, V-L ₂ ,3 electron energy-loss near edge structure studies for TiN and VN films. International Journal of Materials Research, 2007, 98, 1060-1065.	0.3	5
285	Testing Thin Films by Microcompression: Benefits and Limits. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2008, 153, 257-262.	1.0	5
286	Maintaining strength in supersaturated copper–chromium thin films annealed at 0.5 of the melting temperature of Cu. Journal of Materials Science, 2017, 52, 913-920.	3.7	5
287	Influence of substrates and e-beam evaporation parameters on the microstructure of nanocrystalline and epitaxially grown Ti thin films. Applied Surface Science, 2021, 562, 150194.	6.1	5
288	Microstructure and mechanical properties of Si and YN doped powder metallurgical tantalum. International Journal of Materials Research, 2004, 95, 573-578.	0.8	4

#	Article	IF	CITATIONS
289	Following crack path selection in multifilm structures with weak and strong interfaces by in situ 4-point-bending. Journal of Materials Research, 2015, 30, 1090-1097.	2.6	4
290	Stability, phase separation and oxidation of a supersaturated nanocrystalline Cu-33 at.% Cr thin film alloy. Thin Solid Films, 2017, 623, 48-58.	1.8	4
291	Microcantilever Fracture Testing of Intermetallic Cu3Sn in Lead-Free Solder Interconnects. Journal of Electronic Materials, 2017, 46, 1607-1611.	2.2	4
292	Effect of synthesis temperature on the phase formation of NiTiAlFeCr compositionally complex alloy thin films. Journal of Alloys and Compounds, 2021, 854, 155178.	5.5	4
293	Dynamic cryo-mechanical properties of additively manufactured nanocrystalline nickel 3D microarchitectures. Materials and Design, 2022, 220, 110836.	7.0	4
294	Thermomechanical Behavior of Thin Metal Films under Different Ambient Conditions. AIP Conference Proceedings, 2006, , .	0.4	3
295	Thermal Stresses and Microstructure of Tungsten Films on Copper. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2008, 153, 273-277.	1.0	3
296	Unveiling the atomic and electronic structure of the VN/MgO interface. Physical Review B, 2010, 82, .	3.2	3
297	The effect of temperature and strain rate on the periodic cracking of amorphous AlxOy films on Cu. Surface and Coatings Technology, 2011, 206, 1855-1859.	4.8	3
298	Transmission electron microscopy characterization of CrN films on MgO(001). Thin Solid Films, 2013, 545, 154-160.	1.8	3
299	Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion. Additive Manufacturing, 2020, 35, 101337.	3.0	3
300	Phase decomposition in nanocrystalline Cr0.8Cu0.2 thin films. Journal of Alloys and Compounds, 2021, 888, 161391.	5.5	3
301	Non-uniform He bubble formation in W/W2C composite: Experimental and ab-initio study. Acta Materialia, 2022, 226, 117608.	7.9	3
302	Size scaling in bi-crystalline Cu micropillars containing a coherent twin boundary. Acta Materialia, 2022, 230, 117841.	7.9	3
303	Laser surface treatment of steels with CrB2 and Ni2B powders. Journal of Laser Applications, 1999, 11, 216-219.	1.7	2
304	Creep Behavior and Microstructural Stability of Lamellar γ-T1AI (Cr, Mo, Si, B) with Extremely Fine Lamellar Spacing. Materials Research Society Symposia Proceedings, 2000, 646, 125.	0.1	2
305	Characterization of biocompatible Ti(CNO) layers on polymeric substrates. Applied Surface Science, 2003, 219, 329-337.	6.1	2
306	Strain Energy Effects on Texture Evolution in Thin Films: Biaxial vs. Uniaxial Stress State. AIP Conference Proceedings, 2006, , .	0.4	2

#	Article	IF	CITATIONS
307	Surface optical phonon propagation in defect modulated nanowires. Journal of Applied Physics, 2017, 121, 085702.	2.5	2
308	Tribolayer formation during macro- and microscale cyclic contact. Tribology International, 2019, 129, 436-441.	5.9	2
309	Dislocation plasticity and detwinning under thermal stresses in nanotwinned Ag thin films. Acta Materialia, 2020, 198, 61-71.	7.9	2
310	Mechanical Size-Effects and Dislocation Dynamics in Cu Thin Films. Microscopy and Microanalysis, 2003, 9, 246-247.	0.4	1
311	In-Situ X-ray Diffraction as a Tool to Probe Mechanical Phenomena Down to the Nano-Scale. Advanced Engineering Materials, 2006, 8, 1084-1088.	3.5	1
312	Passivation Effects in Copper Thin Films. AIP Conference Proceedings, 2006, , .	0.4	1
313	Size-Induced Transition from Perfect to Partial Dislocation Plasticity in Single Crystal Au Films on Polyimide. Microscopy and Microanalysis, 2007, 13, 278-279.	0.4	1
314	<i>In Situ</i> TEM Heating Study of the Î ³ Lamellae Formation inside the α ₂ Matrix of a Ti-45Al-7.5Nb Alloy. Advanced Materials Research, 0, 146-147, 1365-1368.	0.3	1
315	Disparate tendency of stress evolution of thin and thick electroplated Cu films at room temperature. , 2010, , .		1
316	Physical Metallurgy and Properties of β-solidifying TiAl Based Alloys. Materials Research Society Symposia Proceedings, 2011, 1295, 95.	0.1	1
317	Nanomechanical testing in materials research and development III. Philosophical Magazine, 2012, 92, 3125-3127.	1.6	1
318	In-Situ TEM Studies of Oxidation. , 2012, , 191-208.		1
319	Development of a high-temperature micromechanics stage with a novel temperature measurement approach. Review of Scientific Instruments, 2019, 90, 073904.	1.3	1
320	Towards quantifying the shear delamination of thin films. Materialia, 2019, 8, 100421.	2.7	1
321	Parallel Glide: A Fundamentally Different Type of Dislocation Motion in Ultrathin Metal Films. Materials Research Society Symposia Proceedings, 2003, 779, 441.	0.1	1
322	Microstructure of laser-induced surface-alloyed $\hat{l}\pm$ -Fe. , 1997, , .		1
323	Influence of crystal orientation on twinning in austenitic stainless-steel during single micro-asperity tribology and nanoindentation. Wear, 2022, 504-505, 204403.	3.1	1
324	Measurement of the Interfacial Shear Strength of thin Copper Films on Sapphire by Microindentation Experiments. Materials Research Society Symposia Proceedings, 1995, 403, 151.	0.1	0

#	Article	IF	CITATIONS
325	Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe. Materials Research Society Symposia Proceedings, 1997, 481, 45.	0.1	0
326	Microstructure of Nb BASED A12O3 Composites. Microscopy and Microanalysis, 1998, 4, 588-589.	0.4	0
327	Internal Friction of a High-Nb Gamma-TiAl-Based Alloy with Different Microstructures. Materials Research Society Symposia Proceedings, 2004, 842, 483.	0.1	0
328	Microstructure and Thermo-Mechanical Behavior of NiAl Coatings. Materials Research Society Symposia Proceedings, 2004, 842, 55.	0.1	0
329	Influence of Gas Atmosphere on the Plasticity of Metal Thin Films. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	0
330	A Comparison of the Electronic Structure of N-K in TiN and VN using EELS and Ab-initio Calculations. Microscopy and Microanalysis, 2007, 13, 414-415.	0.4	0
331	Initial Stages of Lamellae Formation in High Nb Containing Î ³ -TiAl Based Alloys. Materials Research Society Symposia Proceedings, 2008, 1128, 40701.	0.1	Ο
332	Atomic and Electronic Interface Structure of a VN Hard Coating on MgO. Microscopy and Microanalysis, 2011, 17, 1370-1371.	0.4	0
333	Quantitative Approaches for in situ SEM and TEM Deformation Studies. Microscopy and Microanalysis, 2012, 18, 736-737.	0.4	Ο
334	Study of the human tooth using a low–voltage CS-corrected TEM. Microscopy and Microanalysis, 2012, 18, 254-255.	0.4	0
335	Annealing Effects on the Structural Properties of FIB Prepared Cu Nanopillars - an in situ TEM study. Microscopy and Microanalysis, 2013, 19, 432-433.	0.4	Ο
336	Study on the Atomic and Electronic Structure in CrN (VN, TiN) Films using CS-Corrected TEM. Microscopy and Microanalysis, 2015, 21, 2079-2080.	0.4	0
337	Compressed Bi-crystal micropillars showing a sigmoidal deformation state – A computational study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 168-174.	5.6	0
338	100 years public–private partnership in metallurgical and materials science research. Materials Today, 2017, 20, 335-337.	14.2	0
339	In-situ TEM Study of Mechanical Size Effects in TiC Strengthened Steels. Microscopy and Microanalysis, 2017, 23, 732-733.	0.4	0
340	Dislocations in Thin Films: Observations. , 2001, , 2329-2331.		0
341	Atomic structure of internal Cu/Al2O3 interfaces. Proceedings Annual Meeting Electron Microscopy Society of America, 1996, 54, 686-687.	0.0	0
342	Structure and Composition of Interfaces in Ceramics and Ceramic Composites. , 1998, , 1-12.		0

#	Article	IF	CITATIONS
343	Size effects in the plastic deformation of NiAl thin films. International Journal of Materials Research, 2022, 95, 769-778.	0.3	Ο
344	Effect of hybridization in PdAlY-(Ni/Au/Ir) metallic glasses thin films on electrical resistivity. Scripta Materialia, 2022, 214, 114681.	5.2	0
345	Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings. International Journal of Materials Research, 2022, 97, 689-698.	0.3	Ο