Richard D Ernst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7946807/publications.pdf

Version: 2024-02-01

93 papers 2,339 citations

28 h-index 243625 44 g-index

96 all docs 96 docs citations

96 times ranked 816 citing authors

#	Article	IF	CITATIONS
1	Synthetic and structural studies of coupling products of diimines with open half-open titanocenes and zirconocenes. Polyhedron, 2022, , 115993.	2.2	O
2	Preparation, characterization, and structural studies of new ruthenium(II) and ruthenium(III) complexes incorporating pyrazole ligands. Polyhedron, 2021, 209, 115365.	2.2	0
3	Transition-Metal Complexes with (C-C)â†'M Agostic Interactions. European Journal of Inorganic Chemistry, 2017, 2017, 1204-1204.	2.0	O
4	Transitionâ€Metal Complexes with (C–C)→M Agostic Interactions. European Journal of Inorganic Chemistry, 2017, 2017, 1205-1226.	2.0	18
5	Synthesis and Structural Study of the Bis(ethylenediamine)CdFe(CO)4 Monomer. Journal of Crystallography, 2014, 2014, 1-4.	0.0	0
6	Crystallization and Structural Characterization of Dimeric and Trimeric Forms of (Neocuproine)CdFe(CO)4. Journal of Crystallography, 2014, 2014, 1-6.	0.0	1
7	Synthesis and Structural Study of the $(N,N,N\hat{a}\in^2,N\hat{a}\in^2$ -Tetraethylethylenediamine)CdFe(CO)4 Dimer. Journal of Crystallography, 2014, 2014, 1-5.	0.0	O
8	Structural Studies of [(py)2CdFe(CO)4]3 and {(THF)5[CdFe(CO)4]3}. Journal of Crystallography, 2014, 2014, 1-5.	0.0	3
9	Structural Studies of the Hexakis(pyridazine)cobalt(II) and Hexakis(pyridazine)ruthenium(II) lons as their Hexafluorophosphate and Tetraphenylborate Salts. Journal of Chemical Crystallography, 2013, 43, 360-364.	1.1	1
10	Syntheses and Structural Studies of the Coupling Products of the Zr(6,6-dimethylcyclohexadienyl)2 Fragment with the Diimines (CH2) n [N=CH(C6H5)]2 (nÂ=Â3,4). Journal of Chemical Crystallography, 2013, 43, 91-95.	1.1	4
11	Synthesis and Structural Study of Tris(-pyrazolyl)hexakis(pyrazole)dicobalt(III) Nitrate. Journal of Crystallography, 2013, 2013, 1-5.	0.0	2
12	Half-Sandwich Ruthenium-Phosphine Complexes with Pentadienyl and Oxo- and Azapentadienyl Ligands. Organometallics, 2012, 31, 7125-7145.	2.3	13
13	Synthetic Doped Amorphous Ferrihydrite for the Fischer–Tropsch Synthesis of Alternative Fuels. Industrial & Doped Amorphous Ferrihydrite for the Fischer–Tropsch Synthesis of Alternative Fuels.	3.7	5
14	Structural Studies of Electron Deficient Titanacyclobutanes. Journal of Chemical Crystallography, 2011, 41, 1391-1394.	1.1	2
15	Structural Studies of Coupling Products Formed Between (C6H5)CH=N(C6H5) and the M(C5H5)(6,6-dmch) Fragments (MÂ=ÂTi, Zr; dmchÂ=Âdimethylcyclohexadienyl). Journal of Chemical Crystallography, 2011, 41, 1433-1437.	1.1	4
16	Structural Studies of the Isomorphous MCl2(PMe3)4 (MÂ=ÂMo, W) Complexes. Journal of Chemical Crystallography, 2011, 41, 1438-1441.	1.1	1
17	Use of pyrazolyl ligands for the formation of a bimetallic cobalt–ruthenium complex. Polyhedron, 2011, 30, 1899-1905.	2.2	6
18	Structural Studies of $[Ru(1,8-naphthyridine)4]2+$ and $[Ru(1,5-cyclooctadiene)(1,8-naphthyridine)2]2+$ as their Tetraphenylborate Salts. Journal of Chemical Crystallography, 2010, 40, 235-240.	1.1	2

#	Article	IF	CITATIONS
19	Structural Studies of (Pyridine)3ZnFe(CO)4 and (Pyridine)(Neocuproin)CdFe(CO)4. Journal of Chemical Crystallography, 2010, 40, 778-782.	1.1	8
20	Structural Studies of the Coupling Products Between (C6H5)CH=NR (RÂ=ÂC6H5, i-C3H7) and the Ti(C5H5)(2,4-C7H11) Fragment (C7H11Â=Âdimethylpentadienyl). Journal of Chemical Crystallography, 2010, 40, 783-787.	1.1	4
21	Syntheses and characterization of the W(II) and W(III) N2 complexes, [WCl2(PMe3)3]2N2 and [WCl3(PMe3)2]2N2. Inorganica Chimica Acta, 2010, 363, 221-224.	2.4	6
22	Coordination chemistry of half-open trozircenes: Adduct formation of $[(\hat{i}-7-C7H7)Zr(\hat{i}-5-2,4-C7H11)]$ with isocyanides, phosphines and N-heterocyclic carbenes. Inorganica Chimica Acta, 2010, 364, 23-29.	2.4	24
23	Fused ring systems derived from reactions of half-open titanocenes with diynes: Syntheses, characterization, cage rearrangements, and structural studies. Journal of Organometallic Chemistry, 2009, 694, 1112-1121.	1.8	8
24	A New Versatile Approach to Substituted Cyclopentadienylâ^'Cycloheptatrienyl Complexes of Zirconium (Trozircenes). Organometallics, 2009, 28, 7041-7046.	2.3	28
25	Cycloheptatrienyl-Pentadienyl Complexes of Zirconium (Half-Open Trozircenes): Syntheses, Structures, Bonding, and Chemistry. Organometallics, 2009, 28, 5866-5876.	2.3	32
26	Iron Aerogel and Xerogel Catalysts for Fischerâ^Tropsch Synthesis of Diesel Fuel. Energy & En	5.1	33
27	Charge Density Analysis of the (Câ^'C)â†'Ti Agostic Interactions in a Titanacyclobutane Complex. Journal of the American Chemical Society, 2009, 131, 6154-6160.	13.7	43
28	The reaction of the bis(6,6-dimethylcyclohexadienyl)zirconium fragment with PhC2SiMe3 \hat{a} \in 4 5+2+2 ring construction. Journal of Molecular Structure, 2008, 890, 107-111.	3.6	11
29	Reactions of the 6,6-dimethylcyclohexadienyl anion with MCl4(PMe3)2 complexes (M=Hf, Nb) – Isolation of complex intramolecular coupling products. Journal of Organometallic Chemistry, 2008, 693, 1420-1425.	1.8	8
30	Isolation and Characterization of Bromination Products of Zr(C5H5)2Br2. Organometallics, 2008, 27, 327-333.	2.3	4
31	Pentadienyl Complexes of the Group 4 Transition Metals. Advances in Organometallic Chemistry, 2007, , 137-199.	1.0	36
32	SF6as a Selective and Reactive Fluorinating Agent for Low-Valent Transition Metal Complexes#. Organometallics, 2007, 26, 2872-2879.	2.3	51
33	Silyl Substitution Effects on Metalâ^'Pentadienyl Bonding:Â Synthesis, Structure, Photoelectron Spectroscopy, and Electronic Structure of a High-Valent Half-Open Zirconocene. Organometallics, 2007, 26, 2867-2871.	2.3	12
34	Edge-bridged half-open zirconocenes: Synthesis, characterization, and reaction with diphenylacetylene. Journal of Organometallic Chemistry, 2007, 692, 4460-4466.	1.8	6
35	Preparation of ruthenium(II) chloride complexes of polybasic amines. Inorganica Chimica Acta, 2006, 359, 839-845.	2.4	10
36	Syntheses and characterization of mono(6,6-dimethylcyclohexadienyl) complexes of titanium and zirconium. Polyhedron, 2006, 25, 876-880.	2,2	11

#	Article	IF	CITATIONS
37	Coupling reactions of alkynes with half-open titanocenes: Agostic ($C\hat{a}\in C\hat{a}^*$ Ti interactions in a tetra(alkyne) coupling product with the Ti(C5H5)(c-C8H11) fragment. Journal of Organometallic Chemistry, 2006, 691, 5211-5217.	1.8	23
38	Origin of 1,4-Regiochemistry in the Dicouplings of Ketones with 6,6-Dimethylcyclohexadienyl Complexes of Titanium and Zirconium:Â A Mechanism Arising from Five-Electron Donation by Alkoxide Ligands. Organometallics, 2005, 24, 3982-3986.	2.3	12
39	Structural and Spectroscopic Demonstration of Agostic Câ^'C Interactions in Electron-Deficient Metallacyclobutanes and Related Cage Complexes:Â Possible Implications for Olefin Polymerizations and Metatheses. Journal of the American Chemical Society, 2005, 127, 16426-16435.	13.7	55
40	Reactions of SF6 with Organotitanium and Organozirconium Complexes:  The "Inert―SF6 as a Reactive Fluorinating Agent. Journal of the American Chemical Society, 2005, 127, 11924-11925.	13.7	51
41	Higher Valent Metal Pentadienyl Chemistry: Â Syntheses, Structures, and Reactions of $Zr(6,6-dmch)2X2Complexes$ (dmch = dimethylcyclohexadienyl; $X = Cl$, Br , I) and Related Species. Organometallics, 2005, 24, 3974-3981.	2.3	17
42	Pentadienyls vs Cyclopentadienyls and Reversal of Metalâ^Ligand Bonding Affinity with Metal Oxidation State:Â Synthesis, Molecular Structures, and Electronic Structures of High-Valent Zirconium Pentadienyl Complexes. Journal of the American Chemical Society, 2004, 126, 14105-14116.	13.7	23
43	Reactions of Zr(C5H5)(6,6-dmch)(PMe3)2 and Zr(6,6-dmch)2(PMe3)2 (dmch=dimethylcyclohexadienyl) with CO and alkynes. Inorganica Chimica Acta, 2004, 357, 3883-3888.	2.4	18
44	Formation and structural study of a mixed ene/enyl ligand on reaction of [Ru(C5Me5)Cl2]2 with 1,3-cyclononadiene. Journal of Organometallic Chemistry, 2004, 689, 685-688.	1.8	1
45	Incorporation of polybasic aromatic amines into ruthenium(II) chloro complexes. Polyhedron, 2004, 23, 2725-2731.	2.2	23
46	Syntheses and structural systematics of trialkylphosphine complexes of open titanocenes, zirconocenes and hafnocenes. Dalton Transactions, 2004, , 1221.	3.3	10
47	Synthetic, spectroscopic, and structural studies of bis(2-methyl-4-phenylpentadienyl)ruthenium, Ru(2-CH3-4-C6H5C5H5)2: characterization of isomeric open ruthenocenes. Journal of Organometallic Chemistry, 2003, 672, 109-114.	1.8	7
48	Synthesis and structure of the edge-bridged open zirconocene, Zr(6,6-dmch)2(PMe3)2 (dmch=dimethylcyclohexadienyl), and its imine coupling product. Journal of Organometallic Chemistry, 2003, 683, 64-69.	1.8	16
49	Reaction of Chromium(III) Chloride with the Cycloheptadienyl Anion:Â Susceptibility of Edge Bridges To Câ^'H Activation Reactions. Organometallics, 2003, 22, 812-817.	2.3	14
50	Structural, Spectroscopic, and Electrochemical Studies of Edge-Bridged Open Ferrocenes. Organometallics, 2003, 22, 1487-1493.	2.3	15
51	Investigation of Zrâ^'C, Zrâ^'N, and Potential Agostic Interactions in an Organozirconium Complex by Experimental Electron Density Analysis. Journal of the American Chemical Society, 2003, 125, 1937-1949.	13.7	63
52	Syntheses, Characterization, and Structural Studies of Half-Open Zirconocenes. Organometallics, 2002, 21, 3182-3188.	2.3	25
53	Zr(C5H5)(6,6-dmch)(PMe3)2, an edge-bridged half-open zirconocene—synthesis, structure, and its reaction with C6H5C2SiMe3. Inorganica Chimica Acta, 2002, 334, 17-24.	2.4	31
54	Bonding in â€~closed,' open, and half-open ferrocenes: new insight from structural and Mössbauer spectroscopic studies. Journal of Organometallic Chemistry, 2001, 637-639, 172-181.	1.8	15

#	Article	IF	Citations
55	Synthesis, characterization, and organic chemistry of an edge-bridged half-open titanocene. Inorganica Chimica Acta, 2000, 300-302, 65-72.	2.4	18
56	Incorporation of phenyl-substituted pentadienyl ligands in (pentamethylcyclopentadienyl)ruthenium complexes â€. Dalton Transactions RSC, 2000, , 3086-3093.	2.3	16
57	Synthesis and characterization of a dimeric acetone coupling product with a titanium–pentadienyl complex. Journal of Organometallic Chemistry, 1999, 583, 42-46.	1.8	13
58	Synthesis and characterization of siloxy-substituted diene and dienyl complexes of the Ru(C5Me5) fragment. Inorganica Chimica Acta, 1999, 296, 170-175.	2.4	12
59	Pentadienyl Ligands: Their Properties, Potential, and Contributions to Inorganic and Organometallic Chemistry. Comments on Inorganic Chemistry, 1999, 21, 285-325.	5.2	98
60	Tandem couplings of imines and other unsaturated organic compounds with a half-open titanocene. Journal of the Chemical Society Dalton Transactions, 1999, , 1883-1890.	1.1	23
61	Syntheses and characterization of the edge-bridged open metallocenes M(C8H11)2 (C8H11â€=â€cyclooctadienyl; Mâ€=â€Ti, V, Cr or Fe) â€. Journal of the Chemical Society Dalton Trans , 3995-4001.	sac t ions, 1	9924
62	Reactions of Imines with Half-Open Titanocenes:Â Substituent Effects and Tandem Couplings with Nitriles and Isonitriles. Organometallics, 1999, 18, 4174-4182.	2.3	26
63	Neutron Diffraction Study of [K(18-crown-6)] [(PPh3)2ReH6Cr(CO)3], a Bimetallic Donor-Acceptor Complexâ<†. European Journal of Inorganic Chemistry, 1998, 1998, 851-854.	2.0	4
64	Shorter Nonbonded Than Bonded Contacts or Nonclassical Metal-to-Saturated Carbon Atom Interactions?. Journal of the American Chemical Society, 1998, 120, 2959-2960.	13.7	76
65	Synthesis, Characterization, and Structural Studies of Transition Metal Open Fulvalene Complexes. Organometallics, 1998, 17, 4240-4248.	2.3	15
66	RuH3[P(C6H5)3] 3 ? as a ligand in complexes with $M(CO)$ 3 Fragments (M = Cr, Mo, W). Journal of Cluster Science, 1996, 7, 629-641.	3.3	11
67	Synthesis and characterization of Fe(1-Me3Si-3-CH3C5H5)2, an open ferrocene derived from an unsymmetric pentadienyl ligand. Journal of Organometallic Chemistry, 1995, 485, 25-29.	1.8	11
68	Synthesis and characterization of phosphine adducts of the open zirconocene Zr(C5H7)2. Journal of Organometallic Chemistry, 1995, 503, 29-33.	1.8	11
69	Synthesis, characterization, and solid-state structures of the 14-electron open metallocenes M[1,5-(Me3Si)2C5H5]2 (M= Ti or Zr). Journal of Organometallic Chemistry, 1995, 501, 95-100.	1.8	25
70	Unprecedented Diastereoselective Addition Reactions of 6,6-Dimethylcyclohexadienyl Titanium Complexes to Aldehydes and Ketones. Journal of the American Chemical Society, 1995, 117, 8490-8491.	13.7	29
71	Incorporation of Siloxy-Substituted Diene and Dienyl Ligands into Ru(C5Me5) Complexes. Organometallics, 1994, 13, 3914-3920.	2.3	17
72	Syntheses, characterization, and structural studies of Lewis base adducts of half-open vanadocenes, V(C5H5)(Pdl)(L). Organometallics, 1993, 12, 1553-1558.	2.3	34

#	Article	IF	Citations
73	Phosphine adducts of the open metallocenes of zirconium, hafnium, niobium, and molybdenum: syntheses, structures, and reactions with carbon monoxide. Organometallics, 1993, 12, 1543-1552.	2.3	31
74	Ring fusion and polycyclic ring constructions via half-open titanocenes. Journal of the American Chemical Society, 1992, 114, 6252-6254.	13.7	48
75	Half-open titanocene chemistry: coupling reactions of pentadienyl ligands with carbon-nitrogen and carbon-oxygen multiple bonds. Organometallics, 1992, 11, 3201-3209.	2.3	25
76	Half-open ruthenocenes derived from [Ru(C5Me5)Cl]4: syntheses, characterizations, and solid-state structures. Organometallics, 1992, 11, 1686-1692.	2.3	46
77	Syntheses, characterization, and structural and kinetic studies of half-open chromocenes and their ligand adducts. Journal of the American Chemical Society, 1991, 113, 6509-6520.	13.7	42
78	Open and half-open ruthenocenes and osmocenes: protonations, structures, and reactions with carbonyl and phosphine ligands. Organometallics, 1990, 9, 2962-2972.	2.3	54
79	Structural characterization of open, half-open, and closed ferrocenes in solution by 57Fe and 13C NMR spectroscopy. Journal of Organometallic Chemistry, 1989, 375, 115-121.	1.8	13
80	Pentadienyl, a More Reactive and More Strongly Bound Ligand Than Cyclopentadienyl. Angewandte Chemie International Edition in English, 1988, 27, 1099-1101.	4.4	30
81	Structural and reactivity patterns in transition-metal-pentadienyl chemistry. Chemical Reviews, 1988, 88, 1255-1291.	47.7	199
82	Ethylene polymerization over organochromium catalysts: A comparison between closed and open pentadienyl ligands. Journal of Polymer Science Part A, 1987, 25, 2063-2075.	2.3	36
83	Synthetic, structural and PE spectroscopic studies on bis(pentadienyl) compounds of iron, ruthenium and osmium. The role of the heavy metal. Journal of Organometallic Chemistry, 1987, 326, 257-268.	1.8	14
84	Solid-state structure of bis(2,3,4-trimethylpentadienyl)iron. Journal of Organometallic Chemistry, 1987, 321, 389-395.	1.8	17
85	Metal-pentadienyl chemistry. Accounts of Chemical Research, 1985, 18, 56-62.	15.6	96
86	Structure and bonding in metal-pentadienyl and related compounds. , 1984, , 1-53.		65
87	Synthesis and characterization of bis(pentadienyl)ruthenium compounds. Organometallics, 1983, 2, 1229-1234.	2.3	35
88	Synthesis and characterization of bis(pentadienyl)iron and several methylated derivatives. Organometallics, 1983, 2, 1220-1228.	2.3	54
89	Crystallization and solid-state structural characterization of (2,2'-bipyridyl)zinc tetracarbonyliron, (bpy)ZnFe(CO)4. Inorganic Chemistry, 1980, 19, 2375-2381.	4.0	29
90	The nature of bis(cyclopentadienyl)uranium dichloride and cyclopentadienyluranium trichloride in solution and in the solid state. Journal of the American Chemical Society, 1979, 101, 2656-2664.	13.7	82

#	Article	IF	CITATIONS
91	Chemical and structural relationships among the oligomeric compounds MFe(CO)4 (M = zinc,) Tj ETQq $1\ 1\ 0.7843$ Inorganic Chemistry, 1978, 17, 1477-1484.	14 rgBT / 4.0	Overlock 10 35
92	Metal-metal bond cleavage reactions. The crystallization and solid state structural characterization of cadmium tetracarbonyliron, CdFe(CO)4. Journal of the American Chemical Society, 1977, 99, 2090-2098.	13.7	70
93	Metal-metal bond cleavage reactions. The crystal and molecular structure of (2,2'-bipyridyl)cadmium tetracarbonyliron, (bpy)CdFe(CO)4. Journal of the American Chemical Society, 1977, 99, 2098-2107.	13.7	28