Peter J F Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7946587/publications.pdf

Version: 2024-02-01

92 papers 8,707 citations

34 h-index 49909 87 g-index

94 all docs 94 docs citations

94 times ranked 9750 citing authors

#	Article	IF	CITATIONS
1	A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372, 159-162.	27.8	1,304
2	Carbon nanotube composites. International Materials Reviews, 2004, 49, 31-43.	19.3	646
3	Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362, 520-522.	27.8	554
4	Open and Closed Edges of Graphene Layers. Physical Review Letters, 2009, 102, 015501.	7.8	539
5	Mechanical damage of carbon nanotubes by ultrasound. Carbon, 1996, 34, 814-816.	10.3	530
6	A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chemical Communications, 2009, , 6717.	4.1	475
7	New Perspectives on the Structure of Graphitic Carbons. Critical Reviews in Solid State and Materials Sciences, 2005, 30, 235-253.	12.3	336
8	High-resolution electron microscopy studies of non-graphitizing carbons. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 667-677.	0.6	210
9	Structure of non-graphitising carbons. International Materials Reviews, 1997, 42, 206-218.	19.3	187
10	Solid state growth mechanisms for carbon nanotubes. Carbon, 2007, 45, 229-239.	10.3	185
11	Imaging the atomic structure of activated carbon. Journal of Physics Condensed Matter, 2008, 20, 362201.	1.8	142
12	Growth and structure of supported metal catalyst particles. International Materials Reviews, 1995, 40, 97-115.	19.3	137
13	High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2799.	1.7	136
14	Self-Assembly of Peptide Nanotubes in an Organic Solvent. Langmuir, 2008, 24, 8158-8162.	3.5	124
15	Fullerene-like models for microporous carbon. Journal of Materials Science, 2013, 48, 565-577.	3.7	111
16	High-resolution electron microscopy of a microporous carbon. Philosophical Magazine Letters, 2000, 80, 381-386.	1.2	108
17	A simple technique for the synthesis of filled carbon nanoparticles. Chemical Physics Letters, 1998, 293, 53-58.	2.6	98
18	The sintering of platinum particles in an alumina-supported catalyst: Further transmission electron microscopy studies. Journal of Catalysis, 1986, 97, 527-542.	6.2	95

#	Article	IF	Citations
19	Sulphur-induced faceting of platinum catalyst particles. Nature, 1986, 323, 792-794.	27.8	93
20	Influence of the Solvent on the Self-Assembly of a Modified Amyloid Beta Peptide Fragment. I. Morphological Investigation. Journal of Physical Chemistry B, 2009, 113, 9978-9987.	2.6	90
21	Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts. Journal of Catalysis, 2003, 219, 17-24.	6.2	86
22	The sintering of an alumina-supported platinum catalyst studied by transmission electron microscopy. Journal of Catalysis, 1983, 82, 127-146.	6.2	70
23	How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?. Physical Chemistry Chemical Physics, 2007, 9, 5919.	2.8	70
24	Tuning the Self-Assembly of the Bioactive Dipeptide <scp> </scp> -Carnosine by Incorporation of a Bulky Aromatic Substituent. Langmuir, 2011, 27, 2980-2988.	3.5	67
25	Direct imaging of an adsorbed layer by high-resolution electron microscopy. Nature, 1988, 332, 617-620.	27.8	51
26	Self-assembly in aqueous solution of a modified amyloid beta peptide fragment. Biophysical Chemistry, 2008, 138, 29-35.	2.8	49
27	Displacement of Methane by Coadsorbed Carbon Dioxide Is Facilitated In Narrow Carbon Nanopores. Journal of Physical Chemistry C, 2012, 116, 13640-13649.	3.1	48
28	High-resolution electron microscopy of tubule-containing graphitic carbon. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1189.	1.7	43
29	Hyper-parallel tempering Monte Carlo simulations of Ar adsorption in new models of microporous non-graphitizing activated carbon: effect of microporosity. Journal of Physics Condensed Matter, 2007, 19, 406208.	1.8	43
30	Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures. Journal of Colloid and Interface Science, 2013, 397, 144-153.	9.4	42
31	Carbon nanomaterials from eleven caking coals. Fuel, 2002, 81, 1509-1514.	6.4	41
32	On charcoal. Interdisciplinary Science Reviews, 1999, 24, 301-306.	1.4	39
33	Characterisation of \hat{l}^2 -lactoglobulin nanoparticles and their binding to caffeine. Food Hydrocolloids, 2017, 71, 85-93.	10.7	37
34	Fullerene-like carbon nanostructures in the Allende meteorite. Earth and Planetary Science Letters, 2000, 183, 355-359.	4.4	36
35	Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N ₂ and CO ₂ adsorption isotherms? Simulation results for a realistic carbon model. Journal of Physics Condensed Matter, 2009, 21, 315005.	1.8	35
36	Molecular dynamics simulation insight into the mechanism of phenol adsorption at low coverages from aqueous solutions on microporous carbons. Physical Chemistry Chemical Physics, 2010, 12, 812-817.	2.8	35

#	Article	IF	Citations
37	Transmission Electron Microscopy of Carbon: A Brief History. Journal of Carbon Research, 2018, 4, 4.	2.7	34
38	Preparation of fullerenes using carbon rods manufactured from Chinese hard coals. Fuel, 2000, 79, 1303-1308.	6.4	31
39	Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide/Oxide. Industrial & Low-Temperature Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten Carbide (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten (1974) & Low-Temperature Solâ^'Gel Preparation of Ordered Nanoparticles of Tungsten (1974) & Low-Temperature Solâ	3.7	31
40	Particle size studies of supported metal catalysts: a comparative study by X-ray diffraction, EXAFS and electron microscopy. Catalysis Letters, 1994, 24, 47-57.	2.6	30
41	Chiral Polymer-Carbon-Nanotube Composite Nanofibers. Advanced Materials, 2007, 19, 1079-1083.	21.0	30
42	Encapsulating uranium in carbon nanoparticles using a new technique. Carbon, 1998, 36, 1859-1861.	10.3	28
43	Rosalind Franklin's work on coal, carbon, and graphite. Interdisciplinary Science Reviews, 2001, 26, 204-210.	1.4	28
44	Preparation and characterisation of supported La0.8Sr0.2MnO3+x. Applied Catalysis A: General, 2001, 210, 63-73.	4.3	26
45	The morphology of platinum catalyst particles studied by transmission electron microscopy. Surface Science, 1987, 185, L459-L466.	1.9	25
46	Spatial variation in soil compaction, and the burrowing activity of the earthworm Aporrectodea caliginosa. Biology and Fertility of Soils, 2004, 39, 360-365.	4.3	24
47	The influence of carbon surface oxygen groups on Dubinin–Astakhov equation parameters calculated from CO ₂ adsorption isotherm. Journal of Physics Condensed Matter, 2010, 22, 085003.	1.8	24
48	Enhancement of microphase ordering and mechanical properties of supramolecular hydrogen-bonded polyurethane networks. Polymer Chemistry, 2018, 9, 3406-3414.	3.9	24
49	Simple model of adsorption on external surface of carbon nanotubes—aÂnew analytical approach basing on molecular simulation data. Adsorption, 2010, 16, 197-213.	3.0	23
50	BET surface area of carbonaceous adsorbentsâ€"Verification using geometric considerations and GCMC simulations on virtual porous carbon models. Applied Surface Science, 2010, 256, 5204-5209.	6.1	23
51	Carbon nanotubes and other graphitic structures as contaminants on evaporated carbon films. Journal of Microscopy, 1997, 186, 88-90.	1.8	21
52	The trapping and decomposition of toxic gases such as hydrogen cyanide using modified mesoporous silicates. Microporous and Mesoporous Materials, 2004, 75, 121-128.	4.4	21
53	A microporous carbon produced by arc-evaporation. Journal of the Chemical Society Chemical Communications, $1993, 1519$.	2.0	20
54	Adsorption from aqueous solutions on opened carbon nanotubes—organic compounds speed up delivery of water from inside. Physical Chemistry Chemical Physics, 2009, 11, 9341.	2.8	20

#	Article	IF	CITATIONS
55	Carbonaceous contaminants on support films for transmission electron microscopy. Carbon, 2001, 39, 909-913.	10.3	19
56	A systematic study of the effect of the hard end-group composition on the microphase separation, thermal and mechanical properties of supramolecular polyurethanes. Polymer, 2016, 107, 368-378.	3.8	19
57	A new and effective synthesis of non-stoichiometric metal oxides such as oxygen-deficient WO2.72. Journal of Materials Chemistry, 2003, 13, 445-446.	6.7	18
58	Testing isotherm models and recovering empirical relationships for adsorption in microporous carbons using virtual carbon models and grand canonical Monte Carlo simulations. Journal of Physics Condensed Matter, 2008, 20, 385212.	1.8	18
59	Structures of Pd(CN) ₂ and Pt(CN) ₂ : Intrinsically Nanocrystalline Materials?. Inorganic Chemistry, 2011, 50, 104-113.	4.0	18
60	Hollow structures with bilayer graphene walls. Carbon, 2012, 50, 3195-3199.	10.3	18
61	Engineering carbon materials with electricity. Carbon, 2017, 122, 504-513.	10.3	17
62	Fullerene Polymers: A Brief Review. Journal of Carbon Research, 2020, 6, 71.	2.7	17
63	Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite. Communications Materials, 2020, 1 , .	6.9	17
64	The track nanotechnology. Radiation Measurements, 2009, 44, 1109-1113.	1.4	16
65	Multiple hydrogen bonds induce formation of nanoparticles with internal microemulsion structure by an amphiphilic copolymer. Soft Matter, 2011, 7, 10116.	2.7	16
66	The structure and growth of C60 platelets. Chemical Physics Letters, 1992, 199, 631-634.	2.6	13
67	Strong faceting of platinum catalyst particles. Applied Catalysis, 1985, 16, 439-442.	0.8	12
68	Electrodeposition of Chiral Polymer–Carbon Nanotube Composite Films. ChemPhysChem, 2007, 8, 1766-1769.	2.1	12
69	Ultrathin graphitic structures and carbon nanotubes in a purified synthetic graphite. Journal of Physics Condensed Matter, 2009, 21, 355009.	1.8	12
70	The structure of junctions between carbon nanotubes and graphene shells. Nanoscale, 2016, 8, 18849-18854.	5.6	12
71	The closed-edge structure of graphite and the effect of electrostatic charging. RSC Advances, 2020, 10, 7994-8001.	3.6	12
72	Bilayer graphene formed by passage of current through graphite: evidence for a three-dimensional structure. Nanotechnology, 2014, 25, 465601.	2.6	11

#	Article	IF	CITATIONS
73	Applicability of molecular simulations for modelling the adsorption of the greenhouse gas CF4on carbons. Journal of Physics Condensed Matter, 2013, 25, 015004.	1.8	10
74	Structural transformation of natural graphite by passage of an electric current. Carbon, 2016, 107, 132-137.	10.3	9
75	Non-Graphitizing Carbon: Its Structure and Formation from Organic Precursors. Eurasian Chemico-Technological Journal, 2019, 21, 227.	0.6	9
76	Direct observation of carbon nanotube formation in Pd/H-ZSM-5 and MoO3/H-ZSM-5 based methane activation catalysts. Catalysis Letters, 2007, 116, 122-127.	2.6	8
77	Folding of graphene slit like pore wallsâ€"a simple method of improving CO ₂ separation from mixtures with CH ₄ or N ₂ . Journal of Physics Condensed Matter, 2014, 26, 485006.	1.8	7
78	Pulsed thermal treatment of carbon up to 3000 °C using an atomic absorption spectrometer. Carbon, 2018, 135, 157-163.	10.3	7
79	Plan-view and profile imaging of sulphided platinum particles. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 69, 655-669.	0.6	6
80	The effect of chiral end groups on the assembly of supramolecular polyurethanes. Polymer Chemistry, 2021, 12, 4488-4500.	3.9	6
81	The influence of the carbon surface chemical composition on Dubinin–Astakhov equation parameters calculated from SF6adsorption data—grand canonical Monte Carlo simulation. Journal of Physics Condensed Matter, 2011, 23, 395005.	1.8	5
82	Rosalind Franklin, carbon scientist. Carbon, 2021, 171, 289-293.	10.3	4
83	Aberration-corrected transmission electron microscopy of a non-graphitizing carbon. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	4
84	Foliar catechol oxidase activity as a measure of copper nutrition of tomato plants. Journal of the Science of Food and Agriculture, 1993, 62, 185-190.	3.5	2
85	Pyrolysis of Polymer-Derived Carbons in the Formation of Graphitizing Carbons and Nanoparticles of Zirconia. Industrial & Engineering Chemistry Research, 2008, 47, 2605-2611.	3.7	2
86	Microscopy and literature. Endeavour, 2019, 43, 100695.	0.4	2
87	Nanotubes with horns: a clue to the growth mechanism?. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 541-544.	2.1	2
88	To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their adsorption properties?. Journal of Physics Condensed Matter, 2016, 28, 015002.	1.8	1
89	Structural transformation of graphite by passage of electric current. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 66-70.	2.1	1
90	The morphology of platinum catalyst particles studied by transmission electron microscopy. Surface Science Letters, 1987, 185, L459-L466.	0.1	0

#	Article	IF	CITATIONS
91	Novel bilayer graphene structures produced by arc-discharge. Journal of Physics: Conference Series, 2014, 522, 012067.	0.4	0
92	Non-Graphitizing Carbons: Structure. , 2016, , .		0