
Jamie A Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	14.5	1,584
2	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	14.5	1,075
3	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 2017, 174, S272-S359.	5.4	597
4	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein oupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	5.4	557
5	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
6	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein oupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
7	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
8	Persephin, a Novel Neurotrophic Factor Related to GDNF and Neurturin. Neuron, 1998, 20, 245-253.	8.1	460
9	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
11	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
12	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
13	Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron, 1990, 4, 11-20.	8.1	276
14	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
15	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
16	The GUDMAP database – an online resource for genitourinary research. Development (Cambridge), 2011, 138, 2845-2853.	2.5	226
17	GUDMAP. Journal of the American Society of Nephrology: JASN, 2008, 19, 667-671.	6.1	225
18	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220

#	Article	IF	CITATIONS
19	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. British Journal of Pharmacology, 2017, 174, S360-S446.	5.4	193
20	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
21	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
22	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
23	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltageâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S160-S194.	5.4	178
24	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 2017, 174, S225-S271.	5.4	177
25	Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney International, 2010, 77, 407-416.	5.2	176
26	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
27	Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Human Molecular Genetics, 2003, 13, 235-246.	2.9	170
28	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
29	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
30	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156
31	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
32	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
33	Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development (Cambridge), 2001, 128, 4329-4338.	2.5	148
34	A Wt1-Controlled Chromatin Switching Mechanism Underpins Tissue-Specific Wnt4 Activation and Repression. Developmental Cell, 2011, 21, 559-574.	7.0	146
35	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligandâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S130-S159.	5.4	144
36	Do different branching epithelia use a conserved developmental mechanism?. BioEssays, 2002, 24, 937-948.	2.5	142

#	Article	IF	CITATIONS
37	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133
38	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	5.4	131
39	The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Research, 2020, 48, D1006-D1021.	14.5	131
40	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
41	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.8	125
42	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
43	Pattern and regulation of cell proliferation during murine ureteric bud development. Journal of Anatomy, 2004, 204, 241-255.	1.5	118
44	Genes and Proteins in Renal Development. Nephron Experimental Nephrology, 2002, 10, 102-113.	2.2	117
45	Induction of Early Stages of Kidney Tubule Differentiation by Lithium Ions. Developmental Biology, 1995, 167, 50-60.	2.0	115
46	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
47	Mesenchyme to Epithelium Transition during Development of the Mammalian Kidney Tubule. Cells Tissues Organs, 1996, 156, 187-201.	2.3	109
48	An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development (Cambridge), 2015, 142, 1893-1908.	2.5	108
49	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
50	The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 2022, 50, D1282-D1294.	14.5	99
51	Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. Journal of Cell Science, 2002, 115, 4495-4503.	2.0	94
52	Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. ELife, 2015, 4, e04000.	6.0	86
53	Calcium/NFAT signalling promotes early nephrogenesis. Developmental Biology, 2011, 352, 288-298.	2.0	84
54	Using synthetic biology to explore principles of development. Development (Cambridge), 2017, 144, 1146-1158.	2.5	81

4

#	Article	IF	CITATIONS
55	8 The Development of the Kidney. Current Topics in Developmental Biology, 1998, 39, 245-301.	2.2	80
56	Towards a genetic basis for kidney development. Mechanisms of Development, 1994, 48, 3-11.	1.7	75
57	2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation. Scientific Reports, 2016, 6, 20664.	3.3	71
58	Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Human Molecular Genetics, 2010, 19, 3320-3331.	2.9	70
59	Synthetic morphology: prospects for engineered, selfâ€constructing anatomies. Journal of Anatomy, 2008, 212, 707-719.	1.5	66
60	An improved kidney dissociation and reaggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis, 2011, 7, 83-87.	1.2	66
61	A rational roadmap for SARS oVâ€2/COVIDâ€19 pharmacotherapeutic research and development: IUPHAR Review 29. British Journal of Pharmacology, 2020, 177, 4942-4966.	5.4	61
62	A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney International, 2005, 68, 2010-2018.	5.2	60
63	Cycles of vascular plexus formation within the nephrogenic zone of the developing mouse kidney. Scientific Reports, 2017, 7, 3273.	3.3	59
64	Cell–Cell Interactions Driving Kidney Morphogenesis. Current Topics in Developmental Biology, 2015, 112, 467-508.	2.2	58
65	A Novel, Low-Volume Method for Organ Culture of Embryonic Kidneys That Allows Development of Cortico-Medullary Anatomical Organization. PLoS ONE, 2010, 5, e10550.	2.5	57
66	Automation in the Life Science Research Laboratory. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571777.	4.1	57
67	Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Scientific Reports, 2018, 8, 15024.	3.3	46
68	Collecting duct morphogenesis. Pediatric Nephrology, 1999, 13, 535-541.	1.7	45
69	Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. ELife, 2019, 8, .	6.0	44
70	Molecular aspects of the epithelial phenotype. BioEssays, 1997, 19, 699-704.	2.5	42
71	Cell Biology of Ureter Development. Journal of the American Society of Nephrology: JASN, 2013, 24, 19-25.	6.1	42
72	Intracellular and extracellular regulation of ureteric bud morphogenesis. Journal of Anatomy, 2001, 198, 257-264.	1.5	41

#	Article	IF	CITATIONS
73	Developmental plasticity and regenerative capacity in the renal ureteric bud/collecting duct system. Development (Cambridge), 2008, 135, 2505-2510.	2.5	41
74	An Improved Method of Renal Tissue Engineering, by Combining Renal Dissociation and Reaggregation with a Low-Volume Culture Technique, Results in Development of Engineered Kidneys Complete with Loops of Henle. Nephron Experimental Nephrology, 2013, 121, e79-e85.	2.2	41
75	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. British Journal of Pharmacology, 2017, 174, S195-S207.	5.4	41
76	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40
77	Structural Determinants of Heparan Sulphate Modulation of GDNF Signalling. Growth Factors, 2003, 21, 109-119.	1.7	39
78	The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system. Journal of Anatomy, 2007, 210, 89-97.	1.5	37
79	Synthetic biology meets tissue engineering. Biochemical Society Transactions, 2016, 44, 696-701.	3.4	37
80	Neurturin: An autocrine regulator of renal collecting duct development. , 1999, 24, 284-292.		36
81	Control of calbindin-D28K expression in developing mouse kidney. Developmental Dynamics, 1994, 199, 45-51.	1.8	35
82	Dissociation of Embryonic Kidney Followed by Re-aggregation as a Method for Chimeric Analysis. Methods in Molecular Biology, 2012, 886, 135-146.	0.9	35
83	A Secreted BMP Antagonist, Cer1, Fine Tunes the Spatial Organization of the Ureteric Bud Tree during Mouse Kidney Development. PLoS ONE, 2011, 6, e27676.	2.5	34
84	Morphogenesis of the Metanephric Kidney. Scientific World Journal, The, 2002, 2, 1937-1950.	2.1	31
85	Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla. Human Molecular Genetics, 2011, 20, 917-926.	2.9	31
86	A library of mammalian effector modules for synthetic morphology. Journal of Biological Engineering, 2014, 8, 26.	4.7	29
87	Regulation, necessity, and the misinterpretation of knockouts. BioEssays, 2009, 31, 826-830.	2.5	28
88	A self-avoidance mechanism in patterning of the urinary collecting duct tree. BMC Developmental Biology, 2014, 14, 35.	2.1	28
89	Asymmetric BMP4 signalling improves the realism of kidney organoids. Scientific Reports, 2017, 7, 14824.	3.3	28
90	Kidney development: the inductive interactions. Seminars in Cell and Developmental Biology, 1996, 7, 195-202.	5.0	26

#	Article	IF	CITATIONS
91	Engineering kidneys from simple cell suspensions: an exercise in self-organization. Pediatric Nephrology, 2014, 29, 519-524.	1.7	26
92	Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys. Scientific Reports, 2015, 5, 9092.	3.3	25
93	The kidney development database. Genesis, 1999, 24, 194-198.	2.1	22
94	Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discovery Today, 2014, 19, 725-729.	6.4	22
95	Synthetic Biology: A Very Short Introduction. , 2018, , .		22
96	Mechanisms of epithelial development and neoplasia in the metanephric kidney. International Journal of Developmental Biology, 1999, 43, 473-8.	0.6	21
97	Dact2 is expressed in the developing ureteric bud/collecting duct system of the kidney and controls morphogenetic behavior of collecting duct cells. American Journal of Physiology - Renal Physiology, 2010, 299, F740-F751.	2.7	20
98	Integration potential of mouse and human bone marrow-derived mesenchymal stem cells. Differentiation, 2012, 83, 128-137.	1.9	19
99	Deducing the stage of origin of Wilms' tumours from a developmental series of <i>Wt1</i> mutants. DMM Disease Models and Mechanisms, 2015, 8, 903-17.	2.4	19
100	Engineering pattern formation and morphogenesis. Biochemical Society Transactions, 2020, 48, 1177-1185.	3.4	19
101	Watching tubules glow and branch. Current Opinion in Genetics and Development, 2005, 15, 364-370.	3.3	18
102	siRNA as a tool for investigating organogenesis. Organogenesis, 2008, 4, 176-181.	1.2	18
103	The Embryonic Kidney: Isolation, Organ Culture, Immunostaining and RNA Interference. Methods in Molecular Biology, 2010, 633, 57-69.	0.9	17
104	How to build a kidney. Seminars in Cell Biology, 1993, 4, 213-219.	3.4	16
105	Nephrons require Rho-kinase for proximal-distal polarity development. Scientific Reports, 2013, 3, 2692.	3.3	16
106	Bioengineering Self-Organizing Signaling Centers to Control Embryoid Body Pattern Elaboration. ACS Synthetic Biology, 2021, 10, 1465-1480.	3.8	16
107	Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating. Frontiers in Bioengineering and Biotechnology, 2017, 5, 13.	4.1	15
108	Synthetic selfâ€patterning and morphogenesis in mammalian cells: a proofâ€ofâ€concept step towards synthetic tissue development. Engineering Biology, 2017, 1, 71-76.	1.8	15

#	Article	IF	CITATIONS
109	Inductive interactions between the mesenchyme and the ureteric bud. Experimental Nephrology, 1996, 4, 77-85.	0.4	15
110	Inverse Correlation between an Organ's Cancer Rate and Its Evolutionary Antiquity. Organogenesis, 2004, 1, 60-63.	1.2	14
111	In-lab three-dimensional printing. Organogenesis, 2012, 8, 22-27.	1.2	13
112	Node retraction during patterning of the urinary collecting duct system. Journal of Anatomy, 2015, 226, 13-21.	1.5	13
113	Accessing Expertâ€Curated Pharmacological Data in the IUPHAR/BPS Guide to PHARMACOLOGY. Current Protocols in Bioinformatics, 2018, 61, 1.34.1-1.34.46.	25.8	13
114	Differentiation of a Contractile, Ureter-Like Tissue, from Embryonic Stem Cell–Derived Ureteric Bud and Ex Fetu Mesenchyme. Journal of the American Society of Nephrology: JASN, 2020, 31, 2253-2262.	6.1	13
115	Epithelial branching: The power of self-loathing. BioEssays, 2007, 29, 205-207.	2.5	12
116	Developmental biologists' choice of subjects approximates to a power law, with no evidence for the existence of a special group of 'model organisms'. BMC Developmental Biology, 2007, 7, 40.	2.1	12
117	Access and Use of the GUDMAP Database of Genitourinary Development. Methods in Molecular Biology, 2012, 886, 185-201.	0.9	12
118	Self-organized Kidney Rudiments: Prospects for Better <i>in vitro</i> Nephrotoxicity Assays. Biomarker Insights, 2015, 10s1, BMI.S20056.	2.5	12
119	Refuting the hypothesis that semaphorinâ€3f/neuropilinâ€2 exclude blood vessels from the cap mesenchyme in the developing kidney. Developmental Dynamics, 2017, 246, 1047-1056.	1.8	11
120	Application of Synthetic Biology to Regenerative Medicine. Journal of Bioengineering & Biomedical Science, 2011, 01, .	0.2	11
121	A method for cold storage and transport of viable embryonic kidney rudiments. Kidney International, 2006, 70, 2031-2034.	5.2	10
122	The KIDSTEM European Research Training Network. Organogenesis, 2007, 3, 2-5.	1.2	10
123	FAK–Src signalling is important to renal collecting duct morphogenesis: discovery using a hierarchical screening technique. Biology Open, 2013, 2, 416-423.	1.2	10
124	Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be?. Life, 2019, 9, 6.	2.4	10
125	Molecular cloning and expression pattern of rpr-1 , a resiniferatoxin-binding, phosphotriesterase-related protein, expressed in rat kidney tubules 1. FEBS Letters, 1997, 410, 378-382.	2.8	9
126	Tamoxifen- and Mifepristone-Inducible Versions of CRISPR Effectors, Cas9 and Cpf1. ACS Synthetic Biology, 2018, 7, 2160-2169.	3.8	9

#	Article	IF	CITATIONS
127	The European Renal Genome Project. Organogenesis, 2005, 2, 42-47.	1.2	8
128	The anatomy of organogenesis: Novel solutions to old problems. Progress in Histochemistry and Cytochemistry, 2006, 40, 165-176.	5.1	8
129	Kidney tissue grown from induced stem cells. Nature, 2015, 526, 512-513.	27.8	8
130	A new guide to immunopharmacology. Nature Reviews Immunology, 2018, 18, 729-729.	22.7	8
131	Organoids and mini-organs. , 2018, , 3-23.		8
132	Functional transport of organic anions and cations in the murine mesonephros. American Journal of Physiology - Renal Physiology, 2018, 315, F130-F137.	2.7	8
133	Why data citation isn't working, and what to do about it. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	8
134	Engineered kidneys: principles, progress, and prospects. Advances in Regenerative Biology, 2014, 1, 24990.	0.2	7
135	Symmetryâ€breaking in branching epithelia: cells on microâ€patterns under flow challenge the hypothesis of positive feedback by a secreted autocrine inhibitor of motility. Journal of Anatomy, 2017, 230, 766-774.	1.5	7
136	The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology, 2020, 160, 10-23.	4.4	7
137	Vascularizing the Kidney in the Embryo and Organoid: Questioning Assumptions about Renal Vasculogenesis. Journal of the American Society of Nephrology: JASN, 2018, 29, 1593-1595.	6.1	6
138	In developing mouse kidneys, orientation of loop of Henle growth is adaptive and guided by longâ€range cues from medullary collecting ducts. Journal of Anatomy, 2019, 235, 262-270.	1.5	5
139	Regenerative medicine therapies: lessons from the kidney. Current Opinion in Physiology, 2020, 14, 41-47.	1.8	5
140	siRNA-Mediated RNA Interference in Embryonic Kidney Organ Culture. Methods in Molecular Biology, 2012, 886, 295-303.	0.9	5
141	Development, databases and the internet. BioEssays, 1995, 17, 999-1001.	2.5	4
142	Synthetic Biology: Rational Pathway Design for Regenerative Medicine. Gerontology, 2016, 62, 564-570.	2.8	4
143	SynPharm: A Guide to PHARMACOLOGY Database Tool for Designing Drug Control into Engineered Proteins. ACS Omega, 2018, 3, 7993-8002.	3.5	4
144	An Information-Theoretic Measure for Patterning in Epithelial Tissues. IEEE Access, 2018, 6, 40302-40312.	4.2	4

#	Article	IF	CITATIONS
145	Emergence of structure in mouse embryos: Structural Entropy morphometry applied to digital models of embryonic anatomy. Journal of Anatomy, 2019, 235, 706-715.	1.5	4
146	Making Immortalized Cell Lines from Embryonic Mouse Kidney. Methods in Molecular Biology, 2012, 886, 165-171.	0.9	4
147	Glycosaminoglycans in the study of mammalian organ development. Biochemical Society Transactions, 2001, 29, 166.	3.4	4
148	Design considerations for small, special-system developmental databases. Seminars in Cell and Developmental Biology, 1997, 8, 519-525.	5.0	3
149	Letter from the Editor. Organogenesis, 2007, 3, 1-1.	1.2	3
150	Design of an irreversible DNA memory element. Natural Computing, 2007, 6, 403-411.	3.0	3
151	Pax2: A "Keep to the Path―Sign on Waddington's Epigenetic Landscape. Developmental Cell, 2017, 41, 331-332.	7.0	3
152	Sebinger Culture: A System Optimized for Morphological Maturation and Imaging of Cultured Mouse Metanephric Primordia. Bio-protocol, 2018, 8, .	0.4	3
153	Challenges of Connecting Chemistry to Pharmacology: Perspectives from Curating the IUPHAR/BPS Guide to PHARMACOLOGY. ACS Omega, 2018, 3, 8408-8420.	3.5	3
154	<scp>SynPharm</scp> and the guide to pharmacology database: A toolset for conferring drug control on engineered proteins. Protein Science, 2021, 30, 160-167.	7.6	3
155	Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch. Methods in Molecular Biology, 2020, 2173, 159-170.	0.9	3
156	Synthetic Morphogenesis: Introducing IEEE Journal Readers to Programming Living Mammalian Cells to Make Structures. Proceedings of the IEEE, 2022, 110, 688-707.	21.3	3
157	Development of the Ureteric Bud. , 2003, , 165-179.		2
158	Why a Book on Branching, and Why Now?. , 2005, , 1-7.		2
159	Human Colon Tissue in Organ Culture. , 2012, , 69-80.		2
160	Guidance by Contact. , 2013, , 129-145.		2
161	The Urinary System. , 2016, , 139-146.		2
162	Machines for living in: Connections and contrasts between designed architecture and the development of living forms. Architectural Research Quarterly, 2016, 20, 45-50.	0.1	2

#	Article	IF	CITATIONS
163	Adaptive selfâ€organization in the embryo: its importance to adult anatomy and to tissue engineering. Journal of Anatomy, 2018, 232, 524-533.	1.5	2
164	Inverse pharmacology: Approaches and tools for introducing druggability into engineered proteins. Biotechnology Advances, 2019, 37, 107439.	11.7	2
165	Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture. Organogenesis, 2021, , 1-10.	1.2	2
166	Intracellular and extracellular regulation of ureteric bud morphogenesis. Journal of Anatomy, 2000, 198, 257-264.	1.5	1
167	Welcome to <i>Organogenesis</i> !. Organogenesis, 2004, 1, 1-2.	1.2	1
168	Control of Organogenesis: Towards Effective Tissue Engineering. , 2009, , 61-70.		1
169	Disinherited Daughters Travel by Tube. Developmental Cell, 2013, 27, 245-246.	7.0	1
170	Mechanical and Mathematical ModelsÂof Morphogenesis. , 2013, , 347-363.		1
171	Growth, Proliferation and Death. , 2013, , 283-305.		1
172	Organizing Organoids: Stem Cells Branch Out. Cell Stem Cell, 2017, 21, 705-706.	11.1	1
173	From organoids to mini-organs. , 2018, , 175-192.		1
174	Investigating Aspects of Renal Physiology and Pharmacology in Organ and Organoid Culture. Methods in Molecular Biology, 2019, 1926, 127-142.	0.9	1
175	Epithelial Branching. , 2015, , 255-264.		1
176	Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Development (Cambridge), 2015, 142, e1.2-e1.2.	2.5	1
177	Introducing blood flow in kidney explants by engraftment onto the chick chorioallantoic membrane is not sufficient to induce arterial smooth muscle cell development. Biology Open, 2022, 11, .	1.2	1
178	Computational Methods and Bioinformatic Tools. , 0, , 769-904.		0
179	Editorial. Organogenesis, 2004, 1, 35-35.	1.2	0
180	GUDMAP - An Online GenitoUrinary Resource. Nature Precedings, 2009, , .	0.1	0

#	Article	IF	CITATIONS
181	S08-09 Construction and re-construction of the mammalian kidney. Mechanisms of Development, 2009, 126, S34.	1.7	0
182	07-P023 GUDMAP – An online genitourinary resource. Mechanisms of Development, 2009, 126, S143.	1.7	0
183	09-P034 The multiple roles of Wt1 and Wnt signalling in kidney development and tumorigenesis. Mechanisms of Development, 2009, 126, S160.	1.7	0
184	Introduction to the special issue. Theory in Biosciences, 2011, 130, 1-3.	1.4	0
185	Modelling Morphogenesis. , 2013, , 339-346.		0
186	The Epithelial State. , 2013, , 183-194.		0
187	Epithelial Branching. , 2013, , 247-271.		0
188	Modelling Using Living Cells. , 2013, , 365-374.		0
189	The inter-dependence of basic and applied biomedical sciences: Lessons from kidney development and tissue-engineering. Porto Biomedical Journal, 2017, 2, 136-139.	1.0	0
190	Renal engineering: strategies to address the problem of the ureter. p { margin-bottom: 0.25cm; line-height: 115%; background: transparent }. Current Opinion in Biomedical Engineering, 2021, , 100334.	3.4	0
191	Cellular mechanisms of morphogenesis. Scholarpedia Journal, 2008, 3, 3615.	0.3	0
192	Anatomical complexity is acquired at an exponential rate during mouse embryonic development Matters, 0, , .	1.0	0