Joachim Kirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7946108/publications.pdf

Version: 2024-02-01

430874 315739 2,692 39 18 38 citations h-index g-index papers 42 42 42 1995 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABA _A R density. Biological Chemistry, 2022, 403, 73-87.	2.5	4
2	Good healing potential of patellar chondral defects after all-arthroscopic autologous chondrocyte implantation with spheroids: a second-look arthroscopic assessment. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 1535-1542.	4.2	8
3	Strengths and Weaknesses of Nonâ€enhanced and Contrastâ€enhanced Cadaver Computed Tomography Scans in the Teaching of Gross Anatomy in an Integrated Curriculum. Anatomical Sciences Education, 2021, , .	3.7	5
4	Binding of gephyrin to microtubules is regulated by its phosphorylation at Ser270. Histochemistry and Cell Biology, 2021, 156, 5-18.	1.7	5
5	Artesunate restores the levels of inhibitory synapse proteins and reduces amyloid- \hat{l}^2 and C-terminal fragments (CTFs) of the amyloid precursor protein in an AD-mouse model. Molecular and Cellular Neurosciences, 2021, 113, 103624.	2.2	9
6	Targeted Ablation of Primary Cilia in Differentiated Dopaminergic Neurons Reduces Striatal Dopamine and Responsiveness to Metabolic Stress. Antioxidants, 2021, 10, 1284.	5.1	7
7	Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death and Disease, 2021, 12, 1139.	6.3	10
8	Influence of syndesmotic injuries and posterior malleolar ankle fractures on fibula position in the ankle joint: a cadaveric study. European Journal of Trauma and Emergency Surgery, 2020, 47, 905-912.	1.7	6
9	Amyloid- \hat{l}^2 Fosters p35/CDK5 Signaling Contributing to Changes of Inhibitory Synapses in Early Stages of Cerebral Amyloidosis. Journal of Alzheimer's Disease, 2020, 74, 1167-1187.	2.6	8
10	Using Nonexpert Online Reports to Enhance Expert Knowledge About Causes of Death in Dental Offices Reported in Scientific Publications: Qualitative and Quantitative Content Analysis and Search Engine Analysis. Journal of Medical Internet Research, 2020, 22, e15304.	4.3	3
11	Influence of ankle joint position on angles and distances of the ankle mortise using intraoperative cone beam CT: A cadaveric study. PLoS ONE, 2019, 14, e0217737.	2.5	8
12	Targeted Depletion of Primary Cilia in Dopaminoceptive Neurons in a Preclinical Mouse Model of Huntington's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 565.	3.7	10
13	Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS ONE, 2019, 14, e0209228.	2.5	66
14	Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochemistry and Cell Biology, 2018, 150, 489-508.	1.7	47
15	Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. American Journal of Pathology, 2016, 186, 2279-2291.	3.8	28
16	KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons. Histochemistry and Cell Biology, 2016, 145, 637-646.	1.7	16
17	Forebrain-specific loss of synaptic GABAA receptors results in altered neuronal excitability and synaptic plasticity in mice. Molecular and Cellular Neurosciences, 2016, 72, 101-113.	2.2	12
18	Histological analysis of the tibial anterior cruciate ligament insertion. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 747-753.	4.2	45

#	Article	IF	CITATIONS
19	Flat midsubstance of the anterior cruciate ligament with tibial "C―shaped insertion site. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 3136-3142.	4.2	155
20	Intraosseous Vascular Access through the Anterior Mandible – A Cadaver Model Pilot Study. PLoS ONE, 2014, 9, e112686.	2.5	1
21	Cyclin-Dependent Kinase 5 Is Involved in the Phosphorylation of Gephyrin and Clustering of GABAA Receptors at Inhibitory Synapses of Hippocampal Neurons. PLoS ONE, 2014, 9, e104256.	2.5	25
22	Effects of two elongation factor 1A isoforms on the formation of gephyrin clusters at inhibitory synapses in hippocampal neurons. Histochemistry and Cell Biology, 2013, 140, 603-609.	1.7	24
23	Phosphorylation of Gephyrin in Hippocampal Neurons by Cyclin-dependent Kinase CDK5 at Ser-270 Is Dependent on Collybistin. Journal of Biological Chemistry, 2012, 287, 30952-30966.	3.4	56
24	Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochemistry and Cell Biology, 2012, 137, 471-482.	1.7	22
25	Molecular architecture of glycinergic synapses. Histochemistry and Cell Biology, 2008, 130, 617-633.	1.7	17
26	Hydrophobic Interactions Mediate Binding of the Glycine Receptor \hat{l}^2 -Subunit to Gephyrin. Journal of Neurochemistry, 2008, 72, 1323-1326.	3.9	75
27	Components of the Translational Machinery Are Associated with Juvenile Glycine Receptors and Are Redistributed to the Cytoskeleton upon Aging and Synaptic Activity. Journal of Biological Chemistry, 2007, 282, 37783-37793.	3.4	13
28	The Crystal Structure of Cdc42 in Complex with Collybistin II, a Gephyrin-interacting Guanine Nucleotide Exchange Factor. Journal of Molecular Biology, 2006, 359, 35-46.	4.2	63
29	Glycinergic transmission. Cell and Tissue Research, 2006, 326, 535-540.	2.9	65
30	Complex Formation between the Postsynaptic Scaffolding Protein Gephyrin, Profilin, and Mena: A Possible Link to the Microfilament System. Journal of Neuroscience, 2003, 23, 8330-8339.	3.6	109
31	Gephyrin Interacts with Dynein Light Chains 1 and 2, Components of Motor Protein Complexes. Journal of Neuroscience, 2002, 22, 5393-5402.	3.6	176
32	Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nature Neuroscience, 2000, 3, 22-29.	14.8	245
33	Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. European Journal of Neuroscience, 1999, 11, 740-744.	2.6	18
34	Interaction of RAFT1 with Gephyrin Required for Rapamycin-Sensitive Signaling. Science, 1999, 284, 1161-1164.	12.6	172
35	Dual Requirement for Gephyrin in Glycine Receptor Clustering and Molybdoenzyme Activity. , 1998, 282, 1321-1324.		387
36	Development of adult-type inhibitory glycine receptors in the central auditory system of rats., 1997, 385, 117-134.		93

#	Article	IF	CITATIONS
37	Identification of a gephyrin binding motif on the glycine receptor \hat{l}^2 subunit. Neuron, 1995, 15, 563-572.	8.1	400
38	Targeting of Glycine Receptor Subunits to Gephyrin-Rich Domains in Transfected Human Embryonic Kidney Cells. Molecular and Cellular Neurosciences, 1995, 6, 450-461.	2.2	125
39	Widespread expression of gephyrin, a putative glycine receptor-tubulin linker protein, in rat brain. Brain Research, 1993, 621, 301-310.	2.2	146