List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7945714/publications.pdf Version: 2024-02-01

ALESSANDRA CAMBI

#	Article	IF	CITATIONS
1	Fluorescence <scp>CLEM</scp> in biology: historic developments and current superâ€resolution applications. FEBS Letters, 2022, 596, 2486-2496.	1.3	17
2	The Localization of Alpha-synuclein in the Endocytic Pathway. Neuroscience, 2021, 457, 186-195.	1.1	21
3	Tissue remodeling by invadosomes. Faculty Reviews, 2021, 10, 39.	1.7	24
4	The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer. Frontiers in Immunology, 2021, 12, 724883.	2.2	19
5	Biological and Technical Challenges in Unraveling the Role of N-Glycans in Immune Receptor Regulation. Frontiers in Chemistry, 2020, 8, 55.	1.8	19
6	Characterization of the Signaling Modalities of Prostaglandin E2 Receptors EP2 and EP4 Reveals Crosstalk and a Role for Microtubules. Frontiers in Immunology, 2020, 11, 613286.	2.2	6
7	Patient Trust and Participation in Cell Biological Research. Trends in Cell Biology, 2019, 29, 765-767.	3.6	1
8	Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nature Communications, 2019, 10, 5171.	5.8	56
9	MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nature Communications, 2019, 10, 4886.	5.8	77
10	Certainty-based marking in a formative assessment improves student course appreciation but not summative examination scores. BMC Medical Education, 2019, 19, 178.	1.0	6
11	Synthetic Semiflexible and Bioactive Brushes. Biomacromolecules, 2019, 20, 2587-2597.	2.6	10
12	PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Scientific Reports, 2019, 9, 3556.	1.6	13
13	Intracellular Galectin-9 Controls Dendritic Cell Function by Maintaining Plasma Membrane Rigidity. IScience, 2019, 22, 240-255.	1.9	23
14	Biophysical Characterization of CD6—TCR/CD3 Interplay in T Cells. Frontiers in Immunology, 2018, 9, 2333.	2.2	12
15	Super-Resolution Correlative Light and Electron Microscopy (SR-CLEM) Reveals Novel Ultrastructural Insights Into Dendritic Cell Podosomes. Frontiers in Immunology, 2018, 9, 1908.	2.2	43
16	EP4 receptor promotes invadopodia and invasion in human breast cancer. European Journal of Cell Biology, 2017, 96, 218-226.	1.6	18
17	Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results and Problems in Cell Differentiation, 2017, 62, 209-242.	0.2	26
18	N-glycan mediated adhesion strengthening during pathogen-receptor binding revealed by cell-cell force spectroscopy. Scientific Reports, 2017, 7, 6713.	1.6	19

#	Article	IF	CITATIONS
19	Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Scientific Reports, 2017, 7, 17511.	1.6	68
20	The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. Journal of Cell Science, 2016, 129, 298-313.	1.2	51
21	CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. Journal of Immunology, 2016, 197, 2715-2725.	0.4	43
22	Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Scientific Reports, 2016, 6, 20693.	1.6	61
23	Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulants. Scientific Reports, 2016, 6, 35373.	1.6	36
24	Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nature Communications, 2016, 7, 13127.	5.8	57
25	From Nanoscale to Mesoscale: Integrating Advanced Microscopy Techniques to Reveal the Ultrastructure and Coordinated Dynamics of Mechanosensory Podosomes. Biophysical Journal, 2016, 110, 617a.	0.2	0
26	Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells. PLoS ONE, 2016, 11, e0149637.	1.1	2
27	Glycan-Based Connectivity Regulates the Hierarchical Organization of Membrane Receptors by Coupling their Micro- and Nano-Scale Lateral Mobility. Biophysical Journal, 2015, 108, 417a.	0.2	Ο
28	Microtubules Shape GPCR Spatiotemporal Membrane Organization and Function by Scaffolding Cortical Signaling Hubs. Biophysical Journal, 2015, 108, 95a.	0.2	0
29	AFM force spectroscopy reveals how subtle structural differences affect the interaction strength between <i>Candida albicans</i> and DC-SIGN. Journal of Molecular Recognition, 2015, 28, 687-698.	1.1	15
30	Editorial: Membrane domains as new drug targets. Frontiers in Physiology, 2015, 6, 172.	1.3	11
31	Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. Journal of Cell Biology, 2015, 210, 851-864.	2.3	74
32	Spatiotemporal organization and mechanosensory function of podosomes. Cell Adhesion and Migration, 2014, 8, 268-272.	1.1	32
33	Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6. Journal of Cell Science, 2014, 127, 1595-606.	1.2	39
34	Syntenin-1 and Ezrin Proteins Link Activated Leukocyte Cell Adhesion Molecule to the Actin Cytoskeleton. Journal of Biological Chemistry, 2014, 289, 13445-13460.	1.6	34
35	Podosomes of dendritic cells facilitate antigen sampling. Journal of Cell Science, 2014, 127, 1052-1064.	1.2	71
36	Nanoclustering as a dominant feature of plasma membrane organization. Journal of Cell Science, 2014, 127, 4995-5005.	1.2	243

#	Article	IF	CITATIONS
37	Podosomes revealed by advanced bioimaging: What did we learn?. European Journal of Cell Biology, 2014, 93, 380-387.	1.6	20
38	High Spatiotemporal Bioimaging Techniques to Study the Plasma Membrane Nanoscale Organization. , 2014, , 49-63.		5
39	Enhanced receptor–clathrin interactions induced by <i>N</i> -glycan–mediated membrane micropatterning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11037-11042.	3.3	67
40	Cortical Microtubules Shape GPCR Spatiotemporal Membrane Organization and Signaling. Biophysical Journal, 2014, 106, 521a-522a.	0.2	0
41	Using Magnetic Probes to Study Receptor Clustering in Live Cells. Biophysical Journal, 2014, 106, 20a.	0.2	Ο
42	Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells. PLoS ONE, 2014, 9, e99589.	1.1	8
43	Studying T-Cell Co-Receptors with Magnetic Probes. Biophysical Journal, 2013, 104, 500a-501a.	0.2	Ο
44	The Neck Region Regulates Spatiotemporal Organization and Virus-Binding Capability of the Pathogen Recognition Receptor DC-Sign. Biophysical Journal, 2013, 104, 610a.	0.2	0
45	Mesoscale Coordinated Dynamics of Cytoskeletal Components at Mechanosensory Podosomes Shown by Time Resolved STICS. Biophysical Journal, 2013, 104, 143a.	0.2	Ο
46	Integrating High-Resolution Bioimaging Techniques to Unravel How Membrane Lipids Influence Nanoscale Organization and Lateral Mobility of Adhesion Receptors. Biophysical Journal, 2013, 104, 612a.	0.2	0
47	Single-Molecule Imaging Technique to Study the Dynamic Regulation of GPCR Function at the Plasma Membrane. Methods in Enzymology, 2013, 521, 47-67.	0.4	12
48	The Multiple Faces of Prostaglandin E2 G-Protein Coupled Receptor Signaling during the Dendritic Cell Life Cycle. International Journal of Molecular Sciences, 2013, 14, 6542-6555.	1.8	33
49	Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature Communications, 2013, 4, 1412.	5.8	117
50	Meeting Report – Visualizing signaling nanoplatforms at a higher spatiotemporal resolution. Journal of Cell Science, 2013, 126, 3817-3821.	1.2	2
51	Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Molecular Biology of the Cell, 2013, 24, 2112-2123.	0.9	104
52	Automated Podosome Identification and Characterization in Fluorescence Microscopy Images. Microscopy and Microanalysis, 2013, 19, 180-189.	0.2	18
53	Microdomains in the membrane landscape shape antigen-presenting cell function. Journal of Leukocyte Biology, 2013, 95, 251-263.	1.5	38
54	The Neck Region of the C-type Lectin DC-SIGN Regulates Its Surface Spatiotemporal Organization and Virus-binding Capacity on Antigen-presenting Cells. Journal of Biological Chemistry, 2012, 287, 38946-38955.	1.6	52

#	Article	IF	CITATIONS
55	Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4869-4874.	3.3	86
56	The Tetraspanin CD37 Orchestrates the α ₄ β ₁ Integrin–Akt Signaling Axis and Supports Long-Lived Plasma Cell Survival. Science Signaling, 2012, 5, ra82.	1.6	89
57	Integrating High Resolution Bioimaging Techniques to Unravel Spatio-Temporal Organization of Podosomes. Biophysical Journal, 2012, 102, 695a.	0.2	0
58	Deciphering the Cross-Talk of the Prostaglandin G-Protein Coupled Receptors EP2 and EP4: From Molecular Insights to Novel Anti-Tumor Targets. Biophysical Journal, 2012, 102, 517a.	0.2	0
59	A Method for Spatially Resolved Local Intracellular Mechanochemical Sensing and Organelle Manipulation. Biophysical Journal, 2012, 103, 395-404.	0.2	10
60	Nanoscale Membrane Organization: Where Biochemistry Meets Advanced Microscopy. ACS Chemical Biology, 2012, 7, 139-149.	1.6	43
61	Mast cell synapses and exosomes: membrane contacts for information exchange. Frontiers in Immunology, 2012, 3, 46.	2.2	58
62	Binding and Uptake of Candida albicans by Human Monocyte-Derived Dendritic Cells. Methods in Molecular Biology, 2012, 845, 319-331.	0.4	0
63	Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes. Cellular and Molecular Life Sciences, 2012, 69, 1889-1901.	2.4	72
64	The Prostaglandin G-Protein Coupled Receptor EP4 Activates Both the Stimulatory Gs and the Inhibitory Gi Signaling Pathways. Biophysical Journal, 2011, 100, 418a.	0.2	0
65	Interleukin-4 Alters Early Phagosome Phenotype by Modulating Class I PI3K Dependent Lipid Remodeling and Protein Recruitment. PLoS ONE, 2011, 6, e22328.	1.1	12
66	Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood, 2011, 118, 4111-4119.	0.6	104
67	The lymphoid chemokine CCL21 triggers LFAâ€1 adhesive properties on human dendritic cells. Immunology and Cell Biology, 2011, 89, 458-465.	1.0	15
68	Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy, 2011, 111, 1659-1669.	0.8	110
69	DECâ€⊋05 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells. European Journal of Immunology, 2011, 41, 1014-1023.	1.6	63
70	Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15437-15442.	3.3	95
71	Differential IL-17 Production and Mannan Recognition Contribute to Fungal Pathogenicity and Commensalism. Journal of Immunology, 2010, 184, 4258-4268.	0.4	59
72	Hotspots of GPI-Anchored Proteins and Integrin Nanoclusters Function as Nucleation Sites for Cell Adhesion. Biophysical Journal, 2010, 98, 577a.	0.2	1

ALESSANDRA CAMBI

#	Article	IF	CITATIONS
73	Molecular Friction as a Tool to Identify Functionalized Alkanethiols. Langmuir, 2010, 26, 6357-6366.	1.6	27
74	A nanometer scale optical view on the compartmentalization of cell membranes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 777-787.	1.4	48
75	AFM topography and friction studies of hydrogen-bonded bilayers of functionalized alkanethiols. Soft Matter, 2010, 6, 3450.	1.2	8
76	Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18557-18562.	3.3	217
77	DCIR is endocytosed into human dendritic cells and inhibits TLR8-mediated cytokine production. Journal of Leukocyte Biology, 2009, 85, 518-525.	1.5	125
78	Modulation of Toll-Like Receptor 2 (TLR2) and TLR4 Responses by <i>Aspergillus fumigatus</i> . Infection and Immunity, 2009, 77, 2184-2192.	1.0	100
79	Necrosis: C-Type Lectins Sense Cell Death. Current Biology, 2009, 19, R375-R378.	1.8	53
80	The Câ€ŧype lectin DC‣IGN internalizes soluble antigens and HIVâ€1 virions <i>via</i> a clathrinâ€dependent mechanism. European Journal of Immunology, 2009, 39, 1923-1928.	1.6	60
81	Dynamic Reâ€organization of Individual Adhesion Nanoclusters in Living Cells by Ligandâ€Patterned Surfaces. Small, 2009, 5, 1258-1263.	5.2	12
82	Optical tools for nanoscale imaging. New Biotechnology, 2009, 25, S26.	2.4	0
83	Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. New England Journal of Medicine, 2009, 361, 1760-1767.	13.9	671
84	Dendritic Cell Interaction with Candida albicans Critically Depends on N-Linked Mannan. Journal of Biological Chemistry, 2008, 283, 20590-20599.	1.6	209
85	A symbiosis: tracking cell signaling with expression probes, quantum dots and a programmable array microscope (PAM). , 2008, , 335-336.		Ο
86	Distinct kinetic and mechanical properties govern ALCAM-mediated interactions as shown by single-molecule force spectroscopy. Journal of Cell Science, 2007, 120, 3965-3976.	1.2	38
87	Ligand-Conjugated Quantum Dots Monitor Antigen Uptake and Processing by Dendritic Cells. Nano Letters, 2007, 7, 970-977.	4.5	105
88	Nanoscale Organization of the Pathogen Receptor DC-SIGN Mapped by Single-Molecule High-Resolution Fluorescence Microscopy. ChemPhysChem, 2007, 8, 1473-1480.	1.0	93
89	Detection of Fungi by Mannose-based Recognition Receptors. , 2007, , 293-307.		5
90	C-Type Lectins on Dendritic Cells and Their Interaction with Pathogen-Derived and Endogenous Glycoconjugates. Current Protein and Peptide Science, 2006, 7, 283-294.	0.7	22

#	Article	IF	CITATIONS
91	Organization of the Integrin LFA-1 in Nanoclusters Regulates Its Activity. Molecular Biology of the Cell, 2006, 17, 4270-4281.	0.9	118
92	Levels of complexity in pathogen recognition by C-type lectins. Current Opinion in Immunology, 2005, 17, 345-351.	2.4	72
93	Near-Field Fluorescence Microscopy: An Optical Nanotool to Study Protein Organization at the Cell Membrane. Nanobiotechnology, 2005, 1, 113-120.	1.2	21
94	How C-type lectins detect pathogens. Cellular Microbiology, 2005, 7, 481-488.	1.1	355
95	"Sweet Talkâ€: Closing in on C Type Lectin Signaling. Immunity, 2005, 22, 399-400.	6.6	26
96	Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. Journal of Cell Biology, 2004, 164, 145-155.	2.3	222
97	Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS Letters, 2004, 573, 6-10.	1.3	104
98	NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood, 2004, 104, 3267-3275.	0.6	291
99	Dual function of C-type lectin-like receptors in the immune system. Current Opinion in Cell Biology, 2003, 15, 539-546.	2.6	225
100	The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. European Journal of Immunology, 2003, 33, 532-538.	1.6	336
101	Dual function of C-type lectin-like receptors in the immune system. Current Opinion in Cell Biology, 2003, 15, 539-539.	2.6	11
102	Changes of lysosomal enzyme activities in sea bass (Dicentrarchus labrax) eggs and developing embryos. Aquaculture, 2001, 202, 249-256.	1.7	75
103	Cytidine deaminase from two extremophilic bacteria: cloning, expression and comparison of their structural stability. Protein Engineering, Design and Selection, 2001, 14, 807-813.	1.0	6
104	Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of Cell Science, 2001, 114, 4153-4160.	1.2	184
105	Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of Cell Science, 2001, 114, 4153-60.	1.2	130
106	Possible role of two phenylalanine residues in the active site of human cytidine deaminase. Protein Engineering, Design and Selection, 2000, 13, 791-799.	1.0	15
107	Biomolecular Interactions Measured by Atomic Force Microscopy. Biophysical Journal, 2000, 79, 3267-3281.	0.2	226
108	Yolk Formation and Degradation during Oocyte Maturation in Seabream Sparus aurata: Involvement of Two Lysosomal Proteinases1. Biology of Reproduction, 1999, 60, 140-146.	1.2	157

#	Article	IF	CITATIONS
109	Cloning, Expression, and Purification of Cytidine Deaminase fromArabidopsis thaliana. Protein Expression and Purification, 1999, 15, 8-15.	0.6	35
110	A comparison of the enantioselectivities of human deoxycytidine kinase and human cytidine deaminaseâ^—. Biochemical Pharmacology, 1998, 56, 1237-1242.	2.0	19
111	Identification of four amino acid residues essential for catalysis in human cytidine deaminase by site-directed mutagenesis and chemical modifications. Protein Engineering, Design and Selection, 1998, 11, 59-63.	1.0	18
112	Role of Glutamate-67 in the Catalytic Mechanism of Human Cytidine Deaminase. Advances in Experimental Medicine and Biology, 1998, 431, 287-291.	0.8	1
113	Studies on Cysteine Residues Involved in the Active Site of Human Cytidine Deaminase. Advances in Experimental Medicine and Biology, 1998, 431, 305-308.	0.8	0
114	Human placenta cytidine deaminase: a zinc metalloprotein. IUBMB Life, 1997, 42, 469-476.	1.5	0
115	Recombinant Human Cytidine Deaminase: Expression, Purification, and Characterization. Protein Expression and Purification, 1996, 8, 247-253.	0.6	59
116	HPLC Analysis of Boldine in Tablets and Syrup. Journal of Liquid Chromatography and Related Technologies, 1992, 15, 617-624.	0.9	6
117	Gauge dependence of nonrelativistic calculations of deuteron photodisintegration. Physical Review C, 1990, 41, 841-848.	1.1	19
118	Reply to â€~â€~Comment on â€~Center-of-mass motion and Siegert's theorem' ''. Physical Reviev 2976-2977.	v C, 1988, 1.1	38, 1
119	Relativistic effects in deuteron electrodisintegration. European Physical Journal D, 1986, 36, 309-311.	0.4	1
120	Relativistic effects in deuteron photoabsorption sum rules. Journal of Physics G: Nuclear Physics, 1985, 11, 897-908.	0.8	1
121	Relativistic effects in the forward deuteron photodisintegration cross section. Journal of Physics G: Nuclear Physics, 1984, 10, L11-L15.	0.8	37
122	Cross section and polarization in deuteron photodisintegration: General formulas. Physical Review C, 1982, 26, 2358-2366.	1.1	25
123	Relativistic and Mesonic Corrections to the Forward Cross Section ford(γ,Âp)n. Physical Review Letters, 1982, 48, 462-465.	2.9	93
124	Two-body modifications of the Siegert dipole operator and doubly radiative n-p capture. Nuclear Physics A, 1981, 356, 469-482.	0.6	0
125	Two-body effects in deuteron photoabsorption sum rules. Physical Review C, 1981, 23, 992-1000.	1.1	14
126	Consistency between pion exchange currents andNâ^'Npotential in doubly radiativenâ^'pcapture. Physical Review C, 1980, 21, 1921-1931.	1.1	1

ALESSANDRA CAMBI

#	ARTICLE	IF	CITATIONS
127	Determination of Ketoprofen by Direct Injection of Deproteinized Body Fluids into a High-Pressure Liquid Chromatographic System. Journal of Pharmaceutical Sciences, 1979, 68, 366-368.	1.6	12
128	High-performance liquid chromatographic determination of phosphocreatinine and creatinine in pharmaceutical preparations. Journal of Chromatography A, 1979, 179, 365-369.	1.8	0
129	Doubly radiative np capture.M1-M1 transitions. Il Nuovo Cimento A, 1978, 47, 421-429.	0.2	5
130	New and Simple Method for Determination of 2-(3-Benzoylphenyl)propionic Acid in Body Fluid. Journal of Pharmaceutical Sciences, 1977, 66, 281-282.	1.6	11
131	A compact electron spectrometer for in-beam measurements of internal conversion coefficients. Nuclear Instruments & Methods, 1972, 103, 331-335.	1.2	17
132	Lifetimes of some levels in 30P. Il Nuovo Cimento A, 1971, 4, 45-60.	0.2	11
133	Spin and parity of some excited states of48Sc. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1971, 2, 537-540.	0.4	7
134	Lifetime of the first excited state in 29P and 29Si. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1969, 30, 94-96.	1.5	15
135	Strength of analogueE2 transitions in30Si and30P. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1969, 2, 775-779.	0.4	9
136	Analysis of the decay of the two-neutron 8â^' state in176Yb. Il Nuovo Cimento B, 1967, 52, 229-232.	0.1	5
137	Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. Exploration of Medicine, 0, , .	1.5	4
138	C-Type Lectins: Multifaceted Receptors in Phagocyte Biology. , 0, , 123-135.		0
139	Intracellular Galectin-9 Controls Dendritic Cell Function by Maintaining Plasma Membrane Rigidity. SSRN Electronic Journal, 0, , .	0.4	0