
Laurence Zitvogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7945198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of the ileal microbiota on colon cancer. Seminars in Cancer Biology, 2022, 86, 955-966.	4.3	11
2	Immunogenic cell stress and death. Nature Immunology, 2022, 23, 487-500.	7.0	434
3	Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nature Medicine, 2022, 28, 315-324.	15.2	225
4	Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nature Medicine, 2022, 28, 535-544.	15.2	158
5	Modulation of cancer immunotherapy by dietary fibers and over-the-counter probiotics. Cell Metabolism, 2022, 34, 350-352.	7.2	7
6	A probiotic supplement boosts response to cancer immunotherapy. Nature Medicine, 2022, 28, 633-634.	15.2	5
7	Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. , 2022, 10, e004191.		23
8	Cross-reactivity between microbial and tumor antigens. Current Opinion in Immunology, 2022, 75, 102171.	2.4	16
9	Cancer Induces a Stress lleopathy Depending on Î ² -Adrenergic Receptors and Promoting Dysbiosis that Contributes to Carcinogenesis. Cancer Discovery, 2022, 12, 1128-1151.	7.7	44
10	Targeting the gut and tumor microbiota in cancer. Nature Medicine, 2022, 28, 690-703.	15.2	159
11	Trial Watch: combination of tyrosine kinase inhibitors (TKIs) and immunotherapy. Oncolmmunology, 2022, 11, .	2.1	9
12	Boosting the immunotherapy response by nutritional interventions. Journal of Clinical Investigation, 2022, 132, .	3.9	8
13	PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. Oncolmmunology, 2022, 11, .	2.1	25
14	A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency. Cancer Discovery, 2021, 11, 408-423.	7.7	28
15	lleal immune tonus is a prognosis marker of proximal colon cancer in mice and patients. Cell Death and Differentiation, 2021, 28, 1532-1547.	5.0	11
16	Immunomodulation by targeted anticancer agents. Cancer Cell, 2021, 39, 310-345.	7.7	131
17	Cross-reactivity between cancer and microbial antigens. Oncolmmunology, 2021, 10, 1877416.	2.1	20
18	Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight, 2021, 6, .	2.3	143

#	Article	IF	CITATIONS
19	Lower Airway Dysbiosis Exacerbates Lung Cancer. Cancer Discovery, 2021, 11, 224-226.	7.7	12
20	Immune checkpoint inhibitors. Journal of Experimental Medicine, 2021, 218, .	4.2	27
21	The microbiome and human cancer. Science, 2021, 371, .	6.0	506
22	Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging, 2021, 13, 6375-6405.	1.4	75
23	Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Cell Death and Disease, 2021, 12, 258.	2.7	113
24	Subversion of calreticulin exposure as a strategy of immune escape. Cancer Cell, 2021, 39, 449-451.	7.7	7
25	Beneficial autoimmunity improves cancer prognosis. Nature Reviews Clinical Oncology, 2021, 18, 591-602.	12.5	63
26	Bortezomib Induces Immunogenic Cell Death in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 405-407.	2.6	11
27	Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death and Differentiation, 2021, 28, 2778-2796.	5.0	72
28	Fecal microbiota transplantation: can it circumvent resistance to PD-1 blockade in melanoma?. Signal Transduction and Targeted Therapy, 2021, 6, 178.	7.1	3
29	Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death and Differentiation, 2021, 28, 2276-2295.	5.0	18
30	Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death and Disease, 2021, 12, 599.	2.7	13
31	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	15.2	216
32	Prolonged SARS-CoV-2 RNA virus shedding and lymphopenia are hallmarks of COVID-19 in cancer patients with poor prognosis. Cell Death and Differentiation, 2021, 28, 3297-3315.	5.0	31
33	Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology?. Cancer Discovery, 2021, 11, 2396-2412.	7.7	81
34	Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity, 2021, 54, 1883-1900.e5.	6.6	233
35	Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. Journal of Experimental Medicine, 2021, 218, .	4.2	20
36	Circulating acetylated polyamines correlate with Covid-19 severity in cancer patients. Aging, 2021, 13, 20860-20885.	1.4	9

#	Article	IF	CITATIONS
37	Commensals shape the immune system. Nature Reviews Immunology, 2021, 21, 615-615.	10.6	1
38	The Porto European Cancer Research Summit 2021. Molecular Oncology, 2021, 15, 2507-2543.	2.1	7
39	A genotype-phenotype screening system using conditionally immortalized immature dendritic cells. STAR Protocols, 2021, 2, 100732.	0.5	10
40	lmmunodynamics of explanted human tumors for immunoâ€oncology. EMBO Molecular Medicine, 2021, 13, e12850.	3.3	9
41	Harnessing the microbiome to restore immunotherapy response. Nature Cancer, 2021, 2, 1301-1304.	5.7	10
42	Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nature Reviews Clinical Oncology, 2020, 17, 49-64.	12.5	92
43	Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Molecular Cell, 2020, 77, 748-760.e9.	4.5	77
44	The immuno-oncological challenge of COVID-19. Nature Cancer, 2020, 1, 946-964.	5.7	96
45	Can we harness the microbiota to enhance the efficacy of cancer immunotherapy?. Nature Reviews Immunology, 2020, 20, 522-528.	10.6	54
46	Trial watch: STING agonists in cancer therapy. Oncolmmunology, 2020, 9, 1777624.	2.1	148
47	Trial watch: IDO inhibitors in cancer therapy. Oncolmmunology, 2020, 9, 1777625.	2.1	91
48	Turning tolerogenic into immunogenic ileal cell death through ileal microbiota: the key to unlock the mystery of colon cancer immunoscore?. Oncolmmunology, 2020, 9, 1778834.	2.1	1
49	Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nature Reviews Clinical Oncology, 2020, 17, 725-741.	12.5	701
50	The Gut Microbiome Associates with Immune Checkpoint Inhibition Outcomes in Patients with Advanced Non–Small Cell Lung Cancer. Cancer Immunology Research, 2020, 8, 1243-1250.	1.6	154
51	Lurbinectedin: an FDA-approved inducer of immunogenic cell death for the treatment of small-cell lung cancer. Oncolmmunology, 2020, 9, 1795995.	2.1	29
52	Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nature Communications, 2020, 11, 3819.	5.8	71
53	Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell, 2020, 182, 1401-1418.e18.	13.5	663
54	Pegylated Engineered IL2 plus Anti–PD-1 Monoclonal Antibody: The Nectar Comes from the Combination. Cancer Discovery, 2020, 10, 1097-1099.	7.7	7

#	Article	IF	CITATIONS
55	Inosine: novel microbiota-derived immunostimulatory metabolite. Cell Research, 2020, 30, 942-943.	5.7	14
56	Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncolmmunology, 2020, 9, 1794423.	2.1	7
57	Immune responses during COVID-19 infection. Oncolmmunology, 2020, 9, 1807836.	2.1	103
58	Antibiotics impair immunotherapy for urothelial cancer. Nature Reviews Urology, 2020, 17, 605-606.	1.9	4
59	On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death and Disease, 2020, 11, 656.	2.7	40
60	Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science, 2020, 369, 936-942.	6.0	217
61	Resolving the Paradox of Colon Cancer Through the Integration of Genetics, Immunology, and the Microbiota. Frontiers in Immunology, 2020, 11, 600886.	2.2	43
62	Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy — Achieving global consensus and visibility for cellular host-directed therapies. International Journal of Infectious Diseases, 2020, 96, 431-439.	1.5	43
63	COVID-19: a challenge for oncology services. Oncolmmunology, 2020, 9, 1760686.	2.1	7
64	CD4+ T Cells at the Center of Inflammaging. Cell Metabolism, 2020, 32, 4-5.	7.2	16
65	Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. European Urology, 2020, 78, 195-206.	0.9	192
66	Seeking Cellular Fitness and Immune Evasion: Autophagy in Pancreatic Carcinoma. Cancer Cell, 2020, 37, 759-760.	7.7	7
67	Trial watch : the gut microbiota as a tool to boost the clinical efficacy of anticancer immunotherapy. Oncolmmunology, 2020, 9, 1774298.	2.1	22
68	Trial watch: TLR3 agonists in cancer therapy. OncoImmunology, 2020, 9, 1771143.	2.1	116
69	Combination treatments with hydroxychloroquine and azithromycin are compatible with the therapeutic induction of anticancer immune responses. Oncolmmunology, 2020, 9, 1789284.	2.1	4
70	Comedications influence immune infiltration and pathological response to neoadjuvant chemotherapy in breast cancer. OncoImmunology, 2020, 9, 1677427.	2.1	8
71	Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncolmmunology, 2020, 9, 1703449.	2.1	156
72	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.		610

#	Article	IF	CITATIONS
73	Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nature Medicine, 2020, 26, 919-931.	15.2	118
74	Gut microbiome to predict efficacy and immune-related toxicities in patients with advanced non-small cell lung cancer treated with anti-PD-1/PD-L1 antibody-based immunotherapy Journal of Clinical Oncology, 2020, 38, 3095-3095.	0.8	17
75	Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. EMBO Molecular Medicine, 2020, 12, e11622.	3.3	67
76	Contribution of annexin A1 to anticancer immunosurveillance. Oncolmmunology, 2019, 8, e1647760.	2.1	27
77	Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncolmmunology, 2019, 8, 1638212.	2.1	125
78	Clinical evidence that immunogenic cell death sensitizes to PD-1/PD-L1 blockade. Oncolmmunology, 2019, 8, e1637188.	2.1	61
79	Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Research, 2019, 29, 846-861.	5.7	160
80	Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity. Nature Medicine, 2019, 25, 1428-1441.	15.2	185
81	Leptin-Producing Oncolytic Virus Makes Tumor-Infiltrating T Cells Fit, Not Fat. Immunity, 2019, 51, 423-425.	6.6	4
82	A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncolmmunology, 2019, 8, e1657375.	2.1	56
83	Upregulation of intratumoral HLA class I and peritumoral Mx1 in ulcerated melanomas. Oncolmmunology, 2019, 8, e1660121.	2.1	4
84	Interferon-Î ³ induces cancer cell ferroptosis. Cell Research, 2019, 29, 692-693.	5.7	28
85	Tumor lysis with LTX-401 creates anticancer immunity. Oncolmmunology, 2019, 8, e1594555.	2.1	26
86	A fluorescent biosensor-based platform for the discovery of immunogenic cancer cell death inducers. Oncolmmunology, 2019, 8, 1606665.	2.1	12
87	Trial watch: dietary interventions for cancer therapy. Oncolmmunology, 2019, 8, e1591878.	2.1	52
88	Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nature Communications, 2019, 10, 1486.	5.8	189
89	Failure of immunosurveillance accelerates aging. Oncolmmunology, 2019, 8, e1575117.	2.1	9
90	Immunostimulatory gut bacteria. Science, 2019, 366, 1077-1078.	6.0	17

#	Article	IF	CITATIONS
91	Anticancer effects of anti-CD47 immunotherapy <i>in vivo</i> . Oncolmmunology, 2019, 8, 1550619.	2.1	32
92	Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy. Oncolmmunology, 2019, 8, e1498285.	2.1	25
93	PD-Loma: a cancer entity with a shared sensitivity to the PD-1/PD-L1 pathway blockade. British Journal of Cancer, 2019, 120, 3-5.	2.9	87
94	The intimate relationship between gut microbiota and cancer immunotherapy. Gut Microbes, 2019, 10, 424-428.	4.3	98
95	CD16+NKG2Ahigh Natural Killer Cells Infiltrate Breast Cancer–Draining Lymph Nodes. Cancer Immunology Research, 2019, 7, 208-218.	1.6	32
96	The impact of the intestinal microbiota in therapeutic responses against cancer. Comptes Rendus - Biologies, 2018, 341, 284-289.	0.1	65
97	The gut microbiota influences anticancer immunosurveillance and general health. Nature Reviews Clinical Oncology, 2018, 15, 382-396.	12.5	389
98	Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. OncoImmunology, 2018, 7, e1433982.	2.1	38
99	The breakthrough of the microbiota. Nature Reviews Immunology, 2018, 18, 87-88.	10.6	112
100	elF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death and Differentiation, 2018, 25, 1375-1393.	5.0	162
101	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
102	The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. Oncolmmunology, 2018, 7, e1434468.	2.1	51
103	The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science, 2018, 359, 1366-1370.	6.0	525
104	Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 2018, 359, 91-97.	6.0	3,689
105	TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer. Oncolmmunology, 2018, 7, e1386826.	2.1	26
106	A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Research, 2018, 78, 1003-1016.	0.4	269
107	Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Frontiers in Immunology, 2018, 9, 2480.	2.2	57
108	Oncolysis with DTT-205 and DTT-304 generates immunological memory in cured animals. Cell Death and Disease, 2018, 9, 1086.	2.7	20

#	Article	IF	CITATIONS
109	Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncolmmunology, 2018, 7, e1526250.	2.1	172
110	Trial watch: Peptide-based vaccines in anticancer therapy. Oncolmmunology, 2018, 7, e1511506.	2.1	121
111	TumGrowth: An open-access web tool for the statistical analysis of tumor growth curves. Oncolmmunology, 2018, 7, e1462431.	2.1	82
112	Impact of chemotactic factors and receptors on the cancer immune infiltrate: a bioinformatics study revealing homogeneity and heterogeneity among patient cohorts. Oncolmmunology, 2018, 7, e1484980.	2.1	24
113	Reply to â€ [~] Challenging PD-L1 expressing cytotoxic T cells as a predictor for response to immunotherapy in melanoma'. Nature Communications, 2018, 9, 2922.	5.8	3
114	Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncolmmunology, 2018, 7, e1503032.	2.1	67
115	Anticorps monoclonaux en oncologie : déclencher une réponse immunitaire en plus de la réduction tumorale spécifique Bulletin De L'Academie Nationale De Medecine, 2018, 202, 707-735.	0.0	0
116	Enhancing the clinical coverage and anticancer efficacy of immune checkpoint blockade through manipulation of the gut microbiota. Oncolmmunology, 2017, 6, e1132137.	2.1	45
117	NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients. Oncolmmunology, 2017, 6, e1137418.	2.1	42
118	Prognostic impact of the expression of NCR1 and NCR3 NK cell receptors and PD-L1 on advanced non-small cell lung cancer. OncoImmunology, 2017, 6, e1163456.	2.1	30
119	Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. Oncolmmunology, 2017, 6, e1299303.	2.1	20
120	Pro-necrotic molecules impact local immunosurveillance in human breast cancer. OncoImmunology, 2017, 6, e1299302.	2.1	88
121	Trial watch: Dendritic cell-based anticancer immunotherapy. Oncolmmunology, 2017, 6, e1328341.	2.1	87
122	Anticancer effects of the microbiome and its products. Nature Reviews Microbiology, 2017, 15, 465-478.	13.6	399
123	Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on <i>BRAF</i> V600E Melanoma Lines with Vemurafenib. Cancer Immunology Research, 2017, 5, 582-593.	1.6	17
124	Immune Checkpoint Blockade, Immunogenic Chemotherapy or IFN-α Blockade Boost the Local and Abscopal Effects of Oncolytic Virotherapy. Cancer Research, 2017, 77, 4146-4157.	0.4	107
125	The complement system is also important in immunogenic cell death. Nature Reviews Immunology, 2017, 17, 143-143.	10.6	6
126	Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. OncoImmunology, 2017, 6, e1386829.	2.1	209

#	Article	IF	CITATIONS
127	Immunogenic stress and death of cancer cells: Contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunological Reviews, 2017, 280, 165-174.	2.8	82
128	Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncolmmunology, 2017, 6, e1371896.	2.1	36
129	Trial watch: Immune checkpoint blockers for cancer therapy. Oncolmmunology, 2017, 6, e1373237.	2.1	62
130	Nutrition, inflammation and cancer. Nature Immunology, 2017, 18, 843-850.	7.0	313
131	The immune contexture in cancer prognosis and treatment. Nature Reviews Clinical Oncology, 2017, 14, 717-734.	12.5	1,590
132	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	7.0	504
133	Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncolmmunology, 2017, 6, e1363139.	2.1	60
134	Trial watch: DNA-based vaccines for oncological indications. Oncolmmunology, 2017, 6, e1398878.	2.1	30
135	Identification of pharmacological agents that induce HMGB1 release. Scientific Reports, 2017, 7, 14915.	1.6	37
136	Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology, 2017, 17, 97-111.	10.6	2,000
137	Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors Journal of Clinical Oncology, 2017, 35, 462-462.	0.8	28
138	Extracellular vesicles: masters of intercellular communication and potential clinical interventions. Journal of Clinical Investigation, 2016, 126, 1139-1143.	3.9	375
139	Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell, 2016, 30, 147-160.	7.7	410
140	Immunological off-target effects of imatinib. Nature Reviews Clinical Oncology, 2016, 13, 431-446.	12.5	120
141	Yet another pattern recognition receptor involved in the chemotherapy-induced anticancer immune response: Formyl peptide receptor-1. Oncolmmunology, 2016, 5, e1118600.	2.1	14
142	NKp30 isoforms and NKp46 transcripts in metastatic melanoma patients: Unique NKp30 pattern in rare melanoma patients with favorable evolution. OncoImmunology, 2016, 5, e1154251.	2.1	20
143	Biomarkers of immunogenic stress in metastases from melanoma patients: Correlations with the immune infiltrate. Oncolmmunology, 2016, 5, e1160193.	2.1	11
144	STAT3 inhibition for cancer therapy: Cell-autonomous effects only?. Oncolmmunology, 2016, 5, e1126063.	2.1	12

#	Article	IF	CITATIONS
145	Positive impact of autophagy in human breast cancer cells on local immunosurveillance. OncoImmunology, 2016, 5, e1174801.	2.1	10
146	Microbiome and Anticancer Immunosurveillance. Cell, 2016, 165, 276-287.	13.5	366
147	Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients. Cancer Cell, 2016, 29, 587-601.	7.7	375
148	The oncolytic compound LTX-401 targets the Golgi apparatus. Cell Death and Differentiation, 2016, 23, 2031-2041.	5.0	25
149	Mouse models in oncoimmunology. Nature Reviews Cancer, 2016, 16, 759-773.	12.8	267
150	Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncolmmunology, 2016, 5, e1220467.	2.1	88
151	Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45, 931-943.	6.6	645
152	Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome. Cancer Research, 2016, 76, 4602-4607.	0.4	92
153	The ratio of CD8 ⁺ /FOXP3 T lymphocytes infiltrating breast tissues predicts the relapse of ductal carcinoma <i>in situ</i> . Oncolmmunology, 2016, 5, e1218106.	2.1	50
154	Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncolmmunology, 2016, 5, e1214790.	2.1	64
155	Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. Cancer Immunology Research, 2016, 4, 895-902.	1.6	134
156	Impact of Pattern Recognition Receptors on the Prognosis of Breast Cancer Patients Undergoing Adjuvant Chemotherapy. Cancer Research, 2016, 76, 3122-3126.	0.4	47
157	Calreticulin expression: Interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer. Oncolmmunology, 2016, 5, e1177692.	2.1	52
158	Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity, 2016, 44, 1255-1269.	6.6	797
159	Unchaining NK cell–mediated anticancer immunosurveillance. Nature Immunology, 2016, 17, 746-747.	7.0	1
160	Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. , 2016, 4, 15.		67
161	Inhibition of formyl peptide receptor 1 reduces the efficacy of anticancer chemotherapy against carcinogen-induced breast cancer. Oncolmmunology, 2016, 5, e1139275.	2.1	21
162	Trial Watch—Immunostimulation with cytokines in cancer therapy. OncoImmunology, 2016, 5, e1115942.	2.1	52

#	Article	IF	CITATIONS
163	Prime time for immune-checkpoint targeted therapy at ASCO 2015. Oncolmmunology, 2016, 5, e1068494.	2.1	8
164	The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy, 2016, 12, 864-875.	4.3	90
165	Immunosurveillance in esophageal carcinoma: The decisive impact of regulatory T cells. Oncolmmunology, 2016, 5, e1064581.	2.1	14
166	Immunophenotyping of Stage III Melanoma Reveals Parameters Associated with Patient Prognosis. Journal of Investigative Dermatology, 2016, 136, 994-1001.	0.3	27
167	Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity, 2016, 44, 343-354.	6.6	767
168	Trial Watch—Oncolytic viruses and cancer therapy. OncoImmunology, 2016, 5, e1117740.	2.1	88
169	Therapy-induced microenvironmental changes in cancer. Journal of Molecular Medicine, 2016, 94, 497-508.	1.7	19
170	Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncolmmunology, 2016, 5, e1149673.	2.1	136
171	Trial Watch—Small molecules targeting the immunological tumor microenvironment for cancer therapy. OncoImmunology, 2016, 5, e1149674.	2.1	46
172	Immunogenic cell death-related biomarkers: Impact on the survival of breast cancer patients after adjuvant chemotherapy. OncoImmunology, 2016, 5, e1082706.	2.1	45
173	Improvement of immunogenic chemotherapy by STAT3 inhibition. Oncolmmunology, 2016, 5, e1078061.	2.1	15
174	Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. OncoImmunology, 2016, 5, e1088631.	2.1	104
175	Differences in the composition of the immune infiltrate in breast cancer, colorectal carcinoma, melanoma and non-small cell lung cancer: A microarray-based meta-analysis. OncoImmunology, 2016, 5, e1067746.	2.1	10
176	Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology, 2016, 5, e1071008.	2.1	545
177	Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. Journal of Clinical Investigation, 2016, 126, 921-937.	3.9	71
178	Dendritic cell–derived exosomes for cancer therapy. Journal of Clinical Investigation, 2016, 126, 1224-1232.	3.9	427
179	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317
180	Characterization of the Microenvironment in Positive and Negative Sentinel Lymph Nodes from Melanoma Patients. PLoS ONE, 2015, 10, e0133363.	1.1	14

#	Article	IF	CITATIONS
181	Type I interferons in anticancer immunity. Nature Reviews Immunology, 2015, 15, 405-414.	10.6	929
182	Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell, 2015, 28, 690-714.	7.7	1,205
183	The oncolytic peptide LTX-315 triggers necrotic cell death. Cell Cycle, 2015, 14, 3506-3512.	1.3	30
184	Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncolmmunology, 2015, 4, e985940.	2.1	47
185	Trial Watch: Peptide-based anticancer vaccines. Oncolmmunology, 2015, 4, e974411.	2.1	97
186	Microbiota Modulation of Myeloid Cells in Cancer Therapy. Cancer Immunology Research, 2015, 3, 103-109.	1.6	31
187	Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Research, 2015, 25, 208-224.	5.7	143
188	A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Research, 2015, 75, 3800-3811.	0.4	201
189	A p53-regulated immune checkpoint relevant to cancer. Science, 2015, 349, 476-477.	6.0	27
190	STAT3 Inhibition Enhances the Therapeutic Efficacy of Immunogenic Chemotherapy by Stimulating Type 1 Interferon Production by Cancer Cells. Cancer Research, 2015, 75, 3812-3822.	0.4	85
191	Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncolmmunology, 2015, 4, e1008814.	2.1	102
192	Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncolmmunology, 2015, 4, e1008866.	2.1	237
193	Antibodies regulate antitumour immunity. Nature, 2015, 521, 35-37.	13.7	29
194	Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Science Translational Medicine, 2015, 7, 283ra55.	5.8	120
195	Cancer and the gut microbiota: An unexpected link. Science Translational Medicine, 2015, 7, 271ps1.	5.8	358
196	Immunologic Correlates in the Course of Treatment With Immunomodulating Antibodies. Seminars in Oncology, 2015, 42, 448-458.	0.8	22
197	Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350, 1079-1084.	6.0	2,539
198	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	6.0	367

#	Article	IF	CITATIONS
199	Natural and therapy-induced immunosurveillance in breast cancer. Nature Medicine, 2015, 21, 1128-1138.	15.2	268
200	Colorectal cancer: the first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy?. Oncolmmunology, 2015, 4, e1058597.	2.1	62
201	Subversion of anticancer immunosurveillance by radiotherapy. Nature Immunology, 2015, 16, 1005-1007.	7.0	35
202	Natural killer cell mediated immunosurveillance of pediatric neuroblastoma. Oncolmmunology, 2015, 4, e1042202.	2.1	31
203	Trial Watch: Adoptive cell transfer for oncological indications. Oncolmmunology, 2015, 4, e1046673.	2.1	29
204	Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncolmmunology, 2015, 4, e1026531.	2.1	26
205	Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy, 2015, 11, 1878-1890.	4.3	91
206	The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. European Journal of Immunology, 2015, 45, 17-31.	1.6	229
207	Immune infiltrate in cancer. Aging, 2015, 7, 358-359.	1.4	9
208	Meta-analysis of organ-specific differences in the structure of the immune infiltrate in major malignancies. Oncotarget, 2015, 6, 11894-11909.	0.8	39
209	Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget, 2015, 6, 20840-20850.	0.8	50
210	The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization. Oncotarget, 2015, 6, 26599-26614.	0.8	42
211	Autocrine signaling of type 1 interferons in successful anticancer chemotherapy. Oncolmmunology, 2015, 4, e988042.	2.1	27
212	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
213	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
214	Trial Watch. Oncolmmunology, 2014, 3, e29179.	2.1	76
215	Synthetic induction of immunogenic cell death by genetic stimulation of endoplasmic reticulum stress. Oncolmmunology, 2014, 3, e28276.	2.1	27
216	Trial Watch: Radioimmunotherapy for oncological indications. OncoImmunology, 2014, 3, e954929.	2.1	40

#	Article	IF	CITATIONS
217	Trial Watch. Oncolmmunology, 2014, 3, e28185.	2.1	36
218	Trial watch: IDO inhibitors in cancer therapy. Oncolmmunology, 2014, 3, e957994.	2.1	223
219	Trial Watch. Oncolmmunology, 2014, 3, e27297.	2.1	99
220	Trial Watch:. Oncolmmunology, 2014, 3, e28694.	2.1	95
221	Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set. Oncolmmunology, 2014, 3, e28473.	2.1	112
222	Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. OncoImmunology, 2014, 3, e27884.	2.1	74
223	Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. Oncolmmunology, 2014, 3, e27560.	2.1	38
224	Mature Cytotoxic CD56bright/CD16 <i>+</i> Natural Killer Cells Can Infiltrate Lymph Nodes Adjacent to Metastatic Melanoma. Cancer Research, 2014, 74, 81-92.	0.4	85
225	Regulation of CD4+NKG2D+ Th1 Cells in Patients with Metastatic Melanoma Treated with Sorafenib: Role of IL-15Rα and NKG2D Triggering. Cancer Research, 2014, 74, 68-80.	0.4	43
226	Trial watch: Dendritic cell-based anticancer therapy. Oncolmmunology, 2014, 3, e963424.	2.1	62
227	Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncolmmunology, 2014, 3, e27663.	2.1	35
228	CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy. Cancer Research, 2014, 74, 436-445.	0.4	118
229	An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncolmmunology, 2014, 3, e944047.	2.1	68
230	Why should we need the gut microbiota to respond to cancer therapies?. OncoImmunology, 2014, 3, e27574.	2.1	17
231	CD103+ Dendritic Cells Producing Interleukin-12 in Anticancer Immunosurveillance. Cancer Cell, 2014, 26, 591-593.	7.7	38
232	Trial Watch. Oncolmmunology, 2014, 3, e27878.	2.1	134
233	Natural Killer Cells Are Essential for the Ability of BRAF Inhibitors to Control BRAFV600E-Mutant Metastatic Melanoma. Cancer Research, 2014, 74, 7298-7308.	0.4	96
234	Targeting Foxp1 for Reinstating Anticancer Immunosurveillance. Immunity, 2014, 41, 345-347.	6.6	3

#	Article	IF	CITATIONS
235	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	15.2	823
236	Dendritic Cell–Derived Exosomes as Immunotherapies in the Fight against Cancer. Journal of Immunology, 2014, 193, 1006-1011.	0.4	231
237	Trial Watch. Oncolmmunology, 2014, 3, e28344.	2.1	31
238	Cell-Death-Associated Molecular Patterns As Determinants of Cancer Immunogenicity. Antioxidants and Redox Signaling, 2014, 20, 1098-1116.	2.5	36
239	Cytokines reinstate NK cell–mediated cancer immunosurveillance. Journal of Clinical Investigation, 2014, 124, 4687-4689.	3.9	6
240	Autophagy and Cellular Immune Responses. Immunity, 2013, 39, 211-227.	6.6	359
241	Immune Infiltrates Are Prognostic Factors in Localized Gastrointestinal Stromal Tumors. Cancer Research, 2013, 73, 3499-3510.	0.4	277
242	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	6.0	1,580
243	Lung cancer: potential targets for immunotherapy. Lancet Respiratory Medicine,the, 2013, 1, 551-563.	5.2	69
244	Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. Immunity, 2013, 39, 74-88.	6.6	739
245	Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet?. Science, 2013, 339, 286-291.	6.0	943
246	Mucosal Imprinting of Vaccine-Induced CD8 ⁺ T Cells Is Crucial to Inhibit the Growth of Mucosal Tumors. Science Translational Medicine, 2013, 5, 172ra20.	5.8	195
247	Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity, 2013, 38, 729-741.	6.6	572
248	Immunogenic Cell Death in Cancer Therapy. Annual Review of Immunology, 2013, 31, 51-72.	9.5	2,489
249	Crosstalk between ER stress and immunogenic cell death. Cytokine and Growth Factor Reviews, 2013, 24, 311-318.	3.2	177
250	Trial watch. Oncolmmunology, 2013, 2, e23803.	2.1	92
251	Phase I clinical trial combining imatinib mesylate and IL-2 in refractory cancer patients. Oncolmmunology, 2013, 2, e23079.	2.1	18
252	Phase I clinical trial combining imatinib mesylate and IL-2. Oncolmmunology, 2013, 2, e23080.	2.1	29

#	Article	IF	CITATIONS
253	Potent Immunomodulatory Effects of the Trifunctional Antibody Catumaxomab. Cancer Research, 2013, 73, 4663-4673.	0.4	36
254	An anticancer therapy-elicited immunosurveillance system that eliminates tetraploid cells. Oncolmmunology, 2013, 2, e22409.	2.1	20
255	ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncolmmunology, 2013, 2, e24568.	2.1	75
256	Victories and deceptions in tumor immunology. Oncolmmunology, 2013, 2, e23687.	2.1	43
257	Correction: Cutting Edge: FcγRIII (CD16) and FcγRI (CD64) Are Responsible for Anti-Glycoprotein 75 Monoclonal Antibody TA99 Therapy for Experimental Metastatic B16 Melanoma. Journal of Immunology, 2013, 190, 1381-1381.	0.4	0
258	NCR3/NKp30 Contributes to Pathogenesis in Primary Sjögren's Syndrome. Science Translational Medicine, 2013, 5, 195ra96.	5.8	99
259	Trial watch. Oncolmmunology, 2013, 2, e23082.	2.1	130
260	Analysis of NKp30/NCR3 isoforms in untreated HIV-1-infected patients from the ANRS SEROCO cohort. OncoImmunology, 2013, 2, e23472.	2.1	22
261	Immunological effects of chemotherapy in spontaneous breast cancers. OncoImmunology, 2013, 2, e27158.	2.1	17
262	Following up tumor-specific regulatory T cells in cancer patients. Oncolmmunology, 2013, 2, e25444.	2.1	21
263	Trial watch. Oncolmmunology, 2013, 2, e25771.	2.1	150
264	Trial Watch: Lenalidomide-based immunochemotherapy. Oncolmmunology, 2013, 2, e26494.	2.1	50
265	Trial watch. Oncolmmunology, 2013, 2, e22789.	2.1	92
266	Trial watch. Oncolmmunology, 2013, 2, e23510.	2.1	153
267	Trial Watch. Oncolmmunology, 2013, 2, e26621.	2.1	101
268	Trial Watch. Oncolmmunology, 2013, 2, e24238.	2.1	58
269	Trial Watch. Oncolmmunology, 2013, 2, e24850.	2.1	49
270	Tumor necrosis factor is dispensable for the success of immunogenic anticancer chemotherapy. Oncolmmunology, 2013, 2, e24786.	2.1	23

#	Article	IF	CITATIONS
271	Trial Watch. Oncolmmunology, 2013, 2, e25238.	2.1	132
272	Trial watch. Oncolmmunology, 2013, 2, e24612.	2.1	175
273	Natural killer cells in non-hematopoietic malignancies. Frontiers in Immunology, 2012, 3, 395.	2.2	27
274	Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. Autophagy, 2012, 8, 1175-1184.	4.3	69
275	Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncolmmunology, 2012, 1, 894-907.	2.1	194
276	Abscopal but desirable. Oncolmmunology, 2012, 1, 407-408.	2.1	53
277	Loss-of-function alleles of <i>P2RX7</i> and <i>TLR4</i> fail to affect the response to chemotherapy in non-small cell lung cancer. OncoImmunology, 2012, 1, 271-278.	2.1	36
278	Can the exome and the immunome converge on the design of efficient cancer vaccines?. Oncolmmunology, 2012, 1, 579-580.	2.1	22
279	Anticancer activity of cardiac glycosides. Oncolmmunology, 2012, 1, 1640-1642.	2.1	89
280	Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer. OncoImmunology, 2012, 1, 326-333.	2.1	95
281	The European Academy of Tumor Immunology: Bridging fields, continents and generations. Oncolmmunology, 2012, 1, 127-128.	2.1	0
282	Subversion of the chemotherapy-induced anticancer immune response by the ecto-ATPase CD39. Oncolmmunology, 2012, 1, 393-395.	2.1	58
283	Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy, 2012, 8, 413-415.	4.3	90
284	Cutting Edge: FcγRIII (CD16) and FcγRI (CD64) Are Responsible for Anti-Glycoprotein 75 Monoclonal Antibody TA99 Therapy for Experimental Metastatic B16 Melanoma. Journal of Immunology, 2012, 189, 5513-5517.	0.4	34
285	Trial Watch. Oncolmmunology, 2012, 1, 699-739.	2.1	184
286	Reply to: Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nature Medicine, 2012, 18, 346-346.	15.2	8
287	Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncolmmunology, 2012, 1, 1223-1225.	2.1	315

#	Article	IF	CITATIONS
289	Oncolmmunology: a new journal at the frontier between oncology and immunology. Oncolmmunology, 2012, 1, 1-2.	2.1	23
290	Trial Watch. Oncolmmunology, 2012, 1, 493-506.	2.1	86
291	IKDCs or B220+ NK cells are pre-mNK cells. Blood, 2012, 119, 4345-4346.	0.6	12
292	Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer. Cell Reports, 2012, 2, 257-269.	2.9	122
293	The secret ally: immunostimulation by anticancer drugs. Nature Reviews Drug Discovery, 2012, 11, 215-233.	21.5	591
294	An Immunosurveillance Mechanism Controls Cancer Cell Ploidy. Science, 2012, 337, 1678-1684.	6.0	367
295	Trial watch. Oncolmmunology, 2012, 1, 1111-1134.	2.1	152
296	Trial Watch: Monoclonal antibodies in cancer therapy. Oncolmmunology, 2012, 1, 28-37.	2.1	103
297	Trial watch. Oncolmmunology, 2012, 1, 1323-1343.	2.1	203
298	Inflammasomes in carcinogenesis and anticancer immune responses. Nature Immunology, 2012, 13, 343-351.	7.0	525
299	Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death. Science Translational Medicine, 2012, 4, 143ra99.	5.8	367
300	Cancer-Induced Immunosuppression: IL-18–Elicited Immunoablative NK Cells. Cancer Research, 2012, 72, 2757-2767.	0.4	95
301	Recent successes of cancer immunotherapy: a new dimension in personalized medicine?. Targeted Oncology, 2012, 7, 1-2.	1.7	5
302	TLR3 as a Biomarker for the Therapeutic Efficacy of Double-stranded RNA in Breast Cancer. Cancer Research, 2011, 71, 1607-1614.	0.4	105
303	Homeostatic defects in interleukin 18â€deficient mice contribute to protection against the lethal effects of endotoxin. Immunology and Cell Biology, 2011, 89, 739-746.	1.0	17
304	Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science, 2011, 334, 1573-1577.	6.0	1,159
305	Contribution of IL-17–producing γδT cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011, 208, 491-503.	4.2	303
306	Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science, 2011, 331, 44-49.	6.0	2,234

#	Article	IF	CITATIONS
307	Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Reviews Clinical Oncology, 2011, 8, 151-160.	12.5	592
308	Harnessing dendritic cells in cancer. Seminars in Immunology, 2011, 23, 42-49.	2.7	53
309	How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer and Metastasis Reviews, 2011, 30, 71-82.	2.7	72
310	Anticancer effects of imatinib via immunostimulation. Nature Medicine, 2011, 17, 1050-1051.	15.2	23
311	The ultimate goal of curative anti-cancer therapies: inducing an adaptive anti-tumor immune response. Frontiers in Immunology, 2011, 2, 66.	2.2	9
312	Prerequisites for the Antitumor Vaccine-Like Effect of Chemotherapy and Radiotherapy. Cancer Journal (Sudbury, Mass), 2011, 17, 351-358.	1.0	75
313	Antibody co-targeting of DCs. Blood, 2011, 118, 6726-6727.	0.6	2
314	Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nature Medicine, 2011, 17, 700-707.	15.2	282
315	IL-18 Induces PD-1–Dependent Immunosuppression in Cancer. Cancer Research, 2011, 71, 5393-5399.	0.4	307
316	Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer and Metastasis Reviews, 2011, 30, 61-69.	2.7	250
317	Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Seminars in Immunopathology, 2011, 33, 369-383.	2.8	265
318	The dendritic cell–tumor cross-talk in cancer. Current Opinion in Immunology, 2011, 23, 146-152.	2.4	78
319	An inhibitor of cyclin-dependent kinases suppresses TLR signaling and increases the susceptibility of cancer patients to herpes viridae. Cell Cycle, 2011, 10, 118-126.	1.3	10
320	Cyclophosphamide Induces Differentiation of Th17 Cells in Cancer Patients. Cancer Research, 2011, 71, 661-665.	0.4	144
321	Cutting Edge: Crucial Role of IL-1 and IL-23 in the Innate IL-17 Response of Peripheral Lymph Node NK1.1â^' Invariant NKT Cells to Bacteria. Journal of Immunology, 2011, 186, 662-666.	0.4	137
322	Pivotal Role of Innate and Adaptive Immunity in Anthracycline Chemotherapy of Established Tumors. Cancer Research, 2011, 71, 4809-4820.	0.4	302
323	IKK connects autophagy to major stress pathways. Autophagy, 2010, 6, 189-191.	4.3	46
324	Bacterial Invasion: Linking Autophagy and Innate Immunity. Current Biology, 2010, 20, R106-R108.	1.8	13

#	Article	IF	CITATIONS
325	Pyroptosis – a cell death modality of its kind?. European Journal of Immunology, 2010, 40, 627-630.	1.6	150
326	The IKK complex contributes to the induction of autophagy. EMBO Journal, 2010, 29, 619-631.	3.5	274
327	Targeting dendritic cell metabolism in cancer. Nature Medicine, 2010, 16, 858-859.	15.2	13
328	Surfaceâ€exposed calreticulin in the interaction between dying cells and phagocytes. Annals of the New York Academy of Sciences, 2010, 1209, 77-82.	1.8	97
329	Desirable cell death during anticancer chemotherapy. Annals of the New York Academy of Sciences, 2010, 1209, 99-108.	1.8	70
330	Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. Journal of Clinical Investigation, 2010, 120, 457-71.	3.9	761
331	Opposing Effects of Toll-like Receptor (TLR3) Signaling in Tumors Can Be Therapeutically Uncoupled to Optimize the Anticancer Efficacy of TLR3 Ligands. Cancer Research, 2010, 70, 490-500.	0.4	104
332	Immunogenic Tumor Cell Death for Optimal Anticancer Therapy: The Calreticulin Exposure Pathway. Clinical Cancer Research, 2010, 16, 3100-3104.	3.2	325
333	Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity. Cancer Research, 2010, 70, 855-858.	0.4	326
334	In vivo depletion of T lymphocyte-specific transcription factors by RNA interference. Cell Cycle, 2010, 9, 2902-2907.	1.3	5
335	Integration of Host-Related Signatures with Cancer Cell–Derived Predictors for the Optimal Management of Anticancer Chemotherapy. Cancer Research, 2010, 70, 9538-9543.	0.4	27
336	Dendritic Cell-Derived Exosomes for Cancer Immunotherapy: What's Next?. Cancer Research, 2010, 70, 1281-1285.	0.4	278
337	Allogeneic Hematopoietic Stem Cell Transplantation: Report from the Committee on the Biological Considerations of Hematological Relapse following Allogeneic Stem Cell Transplantation Unrelated to Graft-versus-Tumor Effects: State of the Science. Biology of Blood and Marrow Transplantation,	2.0	34
338	2010, 16, 709-728. Decoding Cell Death Signals in Inflammation and Immunity. Cell, 2010, 140, 798-804.	13.5	482
339	Chemotherapy and radiotherapy: Cryptic anticancer vaccines. Seminars in Immunology, 2010, 22, 113-124.	2.7	183
340	Chemotherapy induces ATP release from tumor cells. Cell Cycle, 2009, 8, 3723-3728.	1.3	233
341	Phylogenetic conservation of the preapoptotic calreticulin exposure pathway from yeast to mammals. Cell Cycle, 2009, 8, 639-642.	1.3	23
342	Natural Killer Cell IFN-γ Levels Predict Long-term Survival with Imatinib Mesylate Therapy in Gastrointestinal Stromal Tumor–Bearing Patients. Cancer Research, 2009, 69, 3563-3569.	0.4	181

#	Article	IF	CITATIONS
343	Anticancer immunochemotherapy using adjuvants with direct cytotoxic effects. Journal of Clinical Investigation, 2009, 119, 2127-30.	3.9	51
344	Viral subversion of immunogenic cell death. Cell Cycle, 2009, 8, 860-869.	1.3	60
345	The Dendritic Cell–like Functions of IFN-Producing Killer Dendritic Cells Reside in the CD11b+ Subset and Are Licensed by Tumor Cells. Cancer Research, 2009, 69, 6590-6597.	0.4	26
346	Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 364-375.	2.2	185
347	Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO Journal, 2009, 28, 578-590.	3.5	683
348	Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nature Medicine, 2009, 15, 1170-1178.	15.2	1,614
349	Immunogenic and tolerogenic cell death. Nature Reviews Immunology, 2009, 9, 353-363.	10.6	970
350	Witch Hunt against Tumor Cells Enhanced by Dendritic Cells. Annals of the New York Academy of Sciences, 2009, 1174, 51-60.	1.8	11
351	Disruption of the PP1/GADD34 complex induces calreticulin exposure. Cell Cycle, 2009, 8, 3971-3977.	1.3	38
352	Personalized immunotherapy: a siren myth?. Personalized Medicine, 2009, 6, 469-473.	0.8	0
353	The immunogenicity of tumor cell death. Current Opinion in Oncology, 2009, 21, 71-76.	1.1	101
354	Dendritic Cell-Derived Exosomes Promote Natural Killer Cell Activation and Proliferation: A Role for NKG2D Ligands and IL-15Rα. PLoS ONE, 2009, 4, e4942.	1.1	352
355	Immunogenic cancer cell death: a key-lock paradigm. Current Opinion in Immunology, 2008, 20, 504-511.	2.4	271
356	Introduction: the immune response against dying cells. Current Opinion in Immunology, 2008, 20, 501-503.	2.4	12
357	Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunology, Immunotherapy, 2008, 57, 1291-1300.	2.0	65
358	Killer dendritic cells: IKDC and the others. Current Opinion in Immunology, 2008, 20, 558-565.	2.4	35
359	Natural killer cell–directed therapies: moving from unexpected results to successful strategies. Nature Immunology, 2008, 9, 486-494.	7.0	265
360	Immunological aspects of cancer chemotherapy. Nature Reviews Immunology, 2008, 8, 59-73.	10.6	1,374

#	Article	IF	CITATIONS
361	Dendritic cells and innate defense against tumor cells. Cytokine and Growth Factor Reviews, 2008, 19, 79-92.	3.2	49
362	Molecular Interactions between Dying Tumor Cells and the Innate Immune System Determine the Efficacy of Conventional Anticancer Therapies. Cancer Research, 2008, 68, 4026-4030.	0.4	198
363	The Critical Role of IL-15 in the Antitumor Effects Mediated by the Combination Therapy Imatinib and IL-2. Journal of Immunology, 2008, 180, 6477-6483.	0.4	44
364	Regulatory T Cells Control Dendritic Cell/NK Cell Cross-Talk in Lymph Nodes at the Steady State by Inhibiting CD4+ Self-Reactive T Cells. Journal of Immunology, 2008, 180, 4679-4686.	0.4	78
365	CTLA-4 Blockade Confers Lymphocyte Resistance to Regulatory T-Cells in Advanced Melanoma: Surrogate Marker of Efficacy of Tremelimumab?. Clinical Cancer Research, 2008, 14, 5242-5249.	3.2	104
366	The anticancer immune response: indispensable for therapeutic success?. Journal of Clinical Investigation, 2008, 118, 1991-2001.	3.9	520
367	<i>Trans</i> -Presentation of IL-15 Dictates IFN-Producing Killer Dendritic Cells Effector Functions. Journal of Immunology, 2008, 180, 7887-7897.	0.4	47
368	CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. Journal of Clinical Investigation, 2008, 118, 3751-3761.	3.9	56
369	IL-18 Elicited Suppressor NK Cells with Immunoregulatory Functions. Blood, 2008, 112, 106-106.	0.6	1
370	Therapy-Induced Tumor Immunosurveillance Involves IFN-Producing Killer Dendritic Cells: Figure 1 Cancer Research, 2007, 67, 851-853.	0.4	33
371	Leveraging the Immune System during Chemotherapy: Moving Calreticulin to the Cell Surface Converts Apoptotic Death from "Silent―to Immunogenic. Cancer Research, 2007, 67, 7941-7944.	0.4	134
372	Interferon-Î ³ is produced by another player of innate immune responses: The interferon-producing killer dendritic cell (IKDC). Biochimie, 2007, 89, 872-877.	1.3	24
373	Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13, 54-61.	15.2	2,580
374	Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 2007, 13, 1050-1059.	15.2	2,657
375	Ectoâ€calreticulin in immunogenic chemotherapy. Immunological Reviews, 2007, 220, 22-34.	2.8	183
376	The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunological Reviews, 2007, 220, 47-59.	2.8	491
377	Death, danger, and immunity: an infernal trio. Immunological Reviews, 2007, 220, 5-7.	2.8	17
378	Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. Journal of Molecular Medicine, 2007, 85, 1069-1076.	1.7	68

#	Article	IF	CITATIONS
379	Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunology, Immunotherapy, 2007, 56, 641-648.	2.0	1,104
380	Links between innate and cognate tumor immunity. Current Opinion in Immunology, 2007, 19, 224-231.	2.4	59
381	Immunogenic chemotherapy: discovery of a critical protein through proteomic analyses of tumor cells. Cancer Genomics and Proteomics, 2007, 4, 65-70.	1.0	11
382	The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunological Reviews, 2006, 214, 229-238.	2.8	235
383	A novel dendritic cell subset involved in tumor immunosurveillance. Nature Medicine, 2006, 12, 214-219.	15.2	377
384	Cancer despite immunosurveillance: immunoselection and immunosubversion. Nature Reviews Immunology, 2006, 6, 715-727.	10.6	1,108
385	Apoptosis regulation in tetraploid cancer cells. EMBO Journal, 2006, 25, 2584-2595.	3.5	180
386	Selective Resistance of Tetraploid Cancer Cells against DNA Damage-Induced Apoptosis. Annals of the New York Academy of Sciences, 2006, 1090, 35-49.	1.8	50
387	Dendritic cell derived-exosomes: biology and clinical implementations. Journal of Leukocyte Biology, 2006, 80, 471-478.	1.5	117
388	Chemoimmunotherapy of Tumors: Cyclophosphamide Synergizes with Exosome Based Vaccines. Journal of Immunology, 2006, 176, 2722-2729.	0.4	192
389	In vivo veritas. Nature Biotechnology, 2005, 23, 1372-1374.	9.4	19
390	IL-2 production by dendritic cells is not critical for the activation of cognate and innate effectors in draining lymph nodes. European Journal of Immunology, 2005, 35, 2840-2850.	1.6	12
391	Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. Journal of Experimental Medicine, 2005, 202, 1691-1701.	4.2	1,224
392	BCR/ABL Promotes Dendritic Cell–Mediated Natural Killer Cell Activation. Cancer Research, 2005, 65, 6409-6417.	0.4	38
393	CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. Journal of Experimental Medicine, 2005, 202, 1075-1085.	4.2	806
394	The potential of exosomes in immunotherapy. Expert Opinion on Biological Therapy, 2005, 5, 737-747.	1.4	42
395	Tumor cells convert immature myeloid dendritic cells into TGF-β–secreting cells inducing CD4+CD25+ regulatory T cell proliferation. Journal of Experimental Medicine, 2005, 202, 919-929.	4.2	676
396	The dialogue between natural killer cells and dendritic cells. International Congress Series, 2005, 1285, 169-176.	0.2	0

#	Article	IF	CITATIONS
397	The potential of exosomes in immunotherapy of cancer. Blood Cells, Molecules, and Diseases, 2005, 35, 111-115.	0.6	37
398	Selective Accumulation of Mature DC-Lamp+ Dendritic Cells in Tumor Sites Is Associated with Efficient T-Cell-Mediated Antitumor Response and Control of Metastatic Dissemination in Melanoma. Cancer Research, 2004, 64, 2192-2198.	0.4	94
399	Exosomes as Potent Cell-Free Peptide-Based Vaccine. II. Exosomes in CpG Adjuvants Efficiently Prime Naive Tc1 Lymphocytes Leading to Tumor Rejection. Journal of Immunology, 2004, 172, 2137-2146.	0.4	233
400	Exosomes as Potent Cell-Free Peptide-Based Vaccine. I. Dendritic Cell-Derived Exosomes Transfer Functional MHC Class I/Peptide Complexes to Dendritic Cells. Journal of Immunology, 2004, 172, 2126-2136.	0.4	424
401	IL-4 Confers NK Stimulatory Capacity to Murine Dendritic Cells: A Signaling Pathway Involving KARAP/DAP12-Triggering Receptor Expressed on Myeloid Cell 2 Molecules. Journal of Immunology, 2004, 172, 5957-5966.	0.4	67
402	Exosome-based immunotherapy. Cancer Immunology, Immunotherapy, 2004, 53, 234-239.	2.0	113
403	Proteomic Analysis of Exosomes Secreted by Human Mesothelioma Cells. American Journal of Pathology, 2004, 164, 1807-1815.	1.9	318
404	Immune Response Against Dying Tumor Cells. Advances in Immunology, 2004, 84, 131-179.	1.1	104
405	Imatinib mesylate impairs Flt3L-mediated dendritic cell expansion and antitumor effects in vivo. Blood, 2004, 103, 1966-1967.	0.6	45
406	Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell–dependent antitumor effects. Journal of Clinical Investigation, 2004, 114, 379-388.	3.9	248
407	Dendritic and Natural Killer Cells Cooperate in the Control/Switch of Innate Immunity. Journal of Experimental Medicine, 2002, 195, F9-F14.	4.2	240
408	Dendritic cells for NK/LAK activation: rationale for multicellular immunotherapy in neuroblastoma patients. Blood, 2002, 100, 2554-2561.	0.6	56
409	Malignant effusions and immunogenic tumour-derived exosomes. Lancet, The, 2002, 360, 295-305.	6.3	822
410	Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2002, 2, 569-579.	10.6	4,401
411	ANTIGENPRESENTATION ANDT CELLSTIMULATION BYDENDRITICCELLS. Annual Review of Immunology, 2002, 20, 621-667.	9.5	1,577
412	Dendritic cells (DC) promote natural killer (NK) cell functions: dynamics of the human DC/NK cell cross talk. European Cytokine Network, 2002, 13, 17-27.	1.1	57
413	From the antigen-presenting cell to the antigen-presenting vesicle: the exosomes. Current Opinion in Molecular Therapeutics, 2002, 4, 372-81.	2.8	21
414	Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 2001, 7, 297-303.	15.2	1,362

#	Article	IF	CITATIONS
415	Cross-Presentation by Dendritic Cells of Tumor Antigen Expressed in Apoptotic Recombinant Canarypox Virus-Infected Dendritic Cells. Journal of Immunology, 2001, 167, 1795-1802.	0.4	65
416	Dendritic Cell Maturation Overrules H-2d–Mediated Natural Killer T (Nkt) Cell Inhibition. Journal of Experimental Medicine, 2001, 194, 1179-1186.	4.2	71
417	Title is missing!. Annals of Oncology, 2000, 11, 199-206.	0.6	16
418	Molecular Characterization of Dendritic Cell-Derived Exosomes. Journal of Cell Biology, 1999, 147, 599-610.	2.3	950
419	Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Medicine, 1999, 5, 405-411.	15.2	984
420	Interleukin-12 Gene Therapy Prevents Establishment of SCC VII Squamous Cell Carcinomas, Inhibits Tumor Growth, and Elicits Long-term Antitumor Immunity in Syngeneic C3H Mice. Laryngoscope, 1998, 108, 261-268.	1.1	32
421	Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature Medicine, 1998, 4, 594-600.	15.2	1,908
422	Bone Marrow‐Derived Dendritic Cells Serve as Potent Adjuvants for Peptide‐Based Antitumor Vaccines. Stem Cells, 1997, 15, 94-103.	1.4	120
423	Murine Models of Cancer Cytokine Gene Therapy Using Interleukin-12. Annals of the New York Academy of Sciences, 1996, 795, 275-283.	1.8	34
424	IL-12-Engineered Dendritic Cells Serve as Effective Tumor Vaccine Adjuvants in Vivo. Annals of the New York Academy of Sciences, 1996, 795, 284-293.	1.8	85
425	Cytokine Gene Therapy of Cancer Using Interleukin-12: Murine and Clinical Trials. Annals of the New York Academy of Sciences, 1996, 795, 440-454.	1.8	70
426	Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. European Journal of Immunology, 1996, 26, 1335-1341.	1.6	135
427	IL-12 Gene Therapy Using Direct Injection of Tumors with Genetically Engineered Autologous Fibroblasts. University of Pittsburgh, Pittsburgh, Pennsylvania. Human Gene Therapy, 1995, 6, 1607-1624.	1.4	66
428	Construction and Characterization of Retroviral Vectors Expressing Biologically Active Human Interleukin-12. Human Gene Therapy, 1994, 5, 1493-1506.	1.4	131
429	Retroviral Vectors for Use in Human Gene Therapy for Cancer, Gaucher Disease, and Arthritis. Annals of the New York Academy of Sciences, 1994, 716, 72-89.	1.8	39