
Ruben Artero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7945169/publications.pdf Version: 2024-02-01

RUBEN ADTEDO

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10	Tf 50 742 T 1,480
2	The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature, 2009, 457, 322-326.	27.8	275
3	The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation, 2006, 74, 65-80.	1.9	217
4	ThemuscleblindGene Participates in the Organization of Z-Bands and Epidermal Attachments ofDrosophilaMuscles and Is Regulated byDmef2. Developmental Biology, 1998, 195, 131-143.	2.0	139
5	Dual Origin of the Renal Tubules in Drosophila. Current Biology, 2003, 13, 1052-1057.	3.9	104
6	Genetic and Chemical Modifiers of a CUG Toxicity Model in Drosophila. PLoS ONE, 2008, 3, e1595.	2.5	104
7	In vivo discovery of a peptide that prevents CUG–RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11866-11871.	7.1	91
8	Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Human Molecular Genetics, 2005, 14, 873-883.	2.9	77
9	Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 <i>Drosophila</i> model. DMM Disease Models and Mechanisms, 2015, 8, 679-690.	2.4	74
10	Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1427-1437.	1.8	67
11	Noncanonical RNAs From Transcripts of the Drosophila muscleblind Gene. Journal of Heredity, 2006, 97, 253-260.	2.4	62
12	Expanded CTG repeats trigger miRNA alterations in Drosophila that are conserved in myotonic dystrophy type 1 patients. Human Molecular Genetics, 2013, 22, 704-716.	2.9	62
13	rbFOX1/MBNL1 competition for CCUG RNA repeats bindingÂcontributes to myotonic dystrophy typeÂ1/typeÂ2 differences. Nature Communications, 2018, 9, 2009.	12.8	61
14	Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nature Communications, 2018, 9, 2032.	12.8	60
15	miR-23b and miR-218 silencing increase Muscleblind-like expression and alleviate myotonic dystrophy phenotypes in mammalian models. Nature Communications, 2018, 9, 2482.	12.8	60
16	Notch and Ras signaling pathway effector genes expressed in fusion competent and founder cells during Drosophila myogenesis. Development (Cambridge), 2003, 130, 6257-6272.	2.5	58
17	saliva, a new Drosophila gene expressed in the embryonic salivary glands with homologues in plants and vertebrates. Mechanisms of Development, 1998, 75, 159-162.	1.7	51
18	Myotonic dystrophy: candidate small molecule therapeutics. Drug Discovery Today, 2017, 22, 1740-1748.	6.4	46

RUBEN ARTERO

#	Article	IF	CITATIONS
19	Alternative splicing regulation by Muscleblind proteins: from development to disease. Biological Reviews, 2011, 86, 947-958.	10.4	43
20	The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews, 2021, 96, 716-730.	10.4	40
21	Myotonic dystrophy type 1 drug development: A pipeline toward the market. Drug Discovery Today, 2021, 26, 1765-1772.	6.4	38
22	RNA-mediated therapies in myotonic dystrophy. Drug Discovery Today, 2018, 23, 2013-2022.	6.4	37
23	Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a <i>Drosophila</i> myotonic dystrophy model. DMM Disease Models and Mechanisms, 2013, 6, 184-96.	2.4	36
24	Drosophila Muscleblind Is Involved in troponin T Alternative Splicing and Apoptosis. PLoS ONE, 2008, 3, e1613.	2.5	33
25	Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila. Scientific Reports, 2016, 6, 36230.	3.3	33
26	Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25203-25213.	7.1	32
27	Muscleblind isoforms are functionally distinct and regulate α-actinin splicing. Differentiation, 2007, 75, 427-440.	1.9	29
28	miR-7 Restores Phenotypes in Myotonic Dystrophy Muscle Cells by Repressing Hyperactivated Autophagy. Molecular Therapy - Nucleic Acids, 2020, 19, 278-292.	5.1	29
29	MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. International Journal of Molecular Sciences, 2019, 20, 5600.	4.1	27
30	Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. Molecular Therapy - Nucleic Acids, 2020, 21, 837-849.	5.1	25
31	Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction. DMM Disease Models and Mechanisms, 2015, 8, 1569-78.	2.4	24
32	Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication, 2021, 13, 035035.	7.1	24
33	Oligonucleotide probes detect splicing variants insituinDrosophilaembryos. Nucleic Acids Research, 1992, 20, 5687-5690.	14.5	23
34	Molecular Effects of the CTG Repeats in Mutant Dystrophia Myotonica Protein Kinase Gene. Current Genomics, 2008, 9, 509-516.	1.6	21
35	Stage, tissue, and cell specific distribution of alternative Ultrabithorax mRNAs and protein isoforms in the Drosophila embryo. Roux's Archives of Developmental Biology, 1996, 205, 450-459.	1.2	17
36	An Interspecific Functional Complementation Test in Drosophila for Introductory Genetics Laboratory Courses. Journal of Heredity, 2006, 97, 67-73.	2.4	16

RUBEN ARTERO

#	Article	IF	CITATIONS
37	A FRET-based assay for characterization of alternative splicing events using peptide nucleic acid fluorescence in situ hybridization. Nucleic Acids Research, 2009, 37, e116-e116.	14.5	16
38	Generation of GAL4-responsive muscleblind constructs. Genesis, 2002, 34, 111-114.	1.6	15
39	A Conserved Motif Controls Nuclear Localization of Drosophila Muscleblind. Molecules and Cells, 2010, 30, 65-70.	2.6	15
40	The <i>Drosophila junctophilin</i> gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	15
41	A practical approach to FRET-based PNA fluorescence in situ hybridization. Methods, 2010, 52, 343-351.	3.8	13
42	Development of a Drosophila melanogaster spliceosensor system for in vivo high-throughput screening in myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2014, 7, 1297-306.	2.4	13
43	Two Enhancers Control Transcription of Drosophila muscleblind in the Embryonic Somatic Musculature and in the Central Nervous System. PLoS ONE, 2014, 9, e93125.	2.5	13
44	Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Scientific Reports, 2017, 7, 2843.	3.3	12
45	Musashi-2 contributes to myotonic dystrophy muscle dysfunction by promoting excessive autophagy through miR-7 biogenesis repression. Molecular Therapy - Nucleic Acids, 2021, 25, 652-667.	5.1	12
46	Proof of concept of peptide-linked blockmiR-induced MBNL functional rescue in myotonic dystrophy type 1 mouse model. Molecular Therapy - Nucleic Acids, 2022, 27, 1146-1155.	5.1	12
47	Daunorubicin reduces MBNL1 titration by expanded CUG repeat RNA and rescues cardiac dysfunctions in a Drosophila model of myotonic dystrophy. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	11
48	<i>Drosophila SMN2</i> minigene reporter model identifies moxifloxacin as a candidate therapy for SMA. FASEB Journal, 2020, 34, 3021-3036.	0.5	10
49	Preclinical characterization of antagomiR-218 as a potential treatment for myotonic dystrophy. Molecular Therapy - Nucleic Acids, 2021, 26, 174-191.	5.1	9
50	In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models. PLoS ONE, 2017, 12, e0178931.	2.5	9
51	Electron microscopic in situ hybridization of digoxigenin-dUTP-labelled DNA probes with Drosophila melanogaster polytene chromosomes. Chromosome Research, 1998, 6, 405-410.	2.2	7
52	Protective effects of mirtazapine in mice lacking the Mbnl2 gene in forebrain glutamatergic neurons: Relevance for myotonic dystrophy 1. Neuropharmacology, 2020, 170, 108030.	4.1	7
53	Neuroprotective properties of queen bee acid by autophagy induction. Cell Biology and Toxicology, 2023, 39, 751-770.	5.3	7
54	Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers. PLoS ONE, 2016, 11, e0150501.	2.5	7

RUBEN ARTERO

#	Article	IF	CITATIONS
55	Serpent and a hibris reporter are co-expressed in migrating cells during Drosophila hematopoiesis and Malpighian tubule formation. Hereditas, 2006, 143, 117-122.	1.4	6
56	Modeling of Myotonic Dystrophy Cardiac Phenotypes in Drosophila. Frontiers in Neurology, 2018, 9, 473.	2.4	6
57	Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	6
58	Inhibition of autophagy rescues muscle atrophy in a LGMDD2 <i>Drosophila</i> model. FASEB Journal, 2021, 35, e21914.	0.5	6
59	Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. International Journal of Molecular Sciences, 2022, 23, 1441.	4.1	6
60	Optical Cross-Sectional Muscle Area Determination of Drosophila Melanogaster Adult Indirect Flight Muscles. Journal of Visualized Experiments, 2018, , .	0.3	5
61	Rabphilin silencing causes dilated cardiomyopathy in a Drosophila model of nephrocyte damage. Scientific Reports, 2021, 11, 15287.	3.3	4
62	Ex-vivo characterization of Drosophila heart functional parameters. Protocol Exchange, 0, , .	0.3	3
63	Rapid Determination of MBNL1 Protein Levels by Quantitative Dot Blot for the Evaluation of Antisense Oligonucleotides in Myotonic Dystrophy Myoblasts. Methods in Molecular Biology, 2022, 2434, 207-215.	0.9	2
64	A GFP-tagged Muscleblind C protein isoform reporter construct. Fly, 2010, 4, 333-337.	1.7	1
65	In vivo strategies for drug discovery in myotonic dystrophy disorders. Drug Discovery Today: Technologies, 2013, 10, e97-e102.	4.0	1
66	The use of wholeâ€mount <i>in situ</i> hybridization to illustrate gene expression regulation. Biochemistry and Molecular Biology Education, 2014, 42, 339-347.	1.2	1
67	Muscleblind-like 1 regulates epithelial to mesenchymal transition markers in triple-negative breast cancer. Annals of Oncology, 2018, 29, vi32.	1.2	0
68	Practicing logical reasoning through Drosophila segmentation gene mutants. Biochemistry and Molecular Biology Education, 2021, 49, 729-736.	1.2	0
69	Defined d-hexapeptides bind CUG repeats and rescue phenotypes of myotonic dystrophy myotubes in a Drosophila model of the disease. Scientific Reports, 2021, 11, 19417.	3.3	0