
Stephane Roche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type 1 FSHD with 6–10 Repeated Units: Factors Underlying Severity in Index Cases and Disease Penetrance in Their Relatives Attention. International Journal of Molecular Sciences, 2020, 21, 2221.	4.1	2
2	Analysis of the 4q35 chromatin organization reveals distinct long-range interactions in patients affected with Facio-Scapulo-Humeral Dystrophy. Scientific Reports, 2019, 9, 10327.	3.3	12
3	In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. Nanomaterials, 2019, 9, 1233.	4.1	11
4	SMCHD1 is involved in <i>de novo</i> methylation of the <i>DUX4</i> encoding D4Z4 macrosatellite. Nucleic Acids Research, 2019, 47, 2822-2839.	14.5	39
5	Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2019, 12, e002500.	3.6	9
6	Deciphering the complexity of the 4q and 10q subtelomeres by molecular combing in healthy individuals and patients with facioscapulohumeral dystrophy. Journal of Medical Genetics, 2019, 56, 590-601.	3.2	24
7	Methylation hotspots evidenced by deep sequencing in patients with facioscapulohumeral dystrophy and mosaicism. Neurology: Genetics, 2019, 5, e372.	1.9	16
8	Sample Pooling and Inflammation Linked to the False Selection of Biomarkers for Neurodegenerative Diseases in Top–Down Proteomics: A Pilot Study. Frontiers in Molecular Neuroscience, 2018, 11, 477.	2.9	20
9	Molecular combing reveals complex 4q35 rearrangements in Facioscapulohumeral dystrophy. Human Mutation, 2017, 38, 1432-1441.	2.5	39
10	Segregation between SMCHD1 mutation, D4Z4 hypomethylation and Facio-Scapulo-Humeral Dystrophy: a case report. BMC Medical Genetics, 2016, 17, 66.	2.1	13
11	Correlation between low FAT1 expression and early affected muscle in FSHD. Neuromuscular Disorders, 2015, 25, S312.	0.6	0
12	Correlation between low <scp>FAT</scp> 1 expression and early affected muscle in facioscapulohumeral muscular dystrophy. Annals of Neurology, 2015, 78, 387-400.	5.3	32
13	miRNA Expression in Control and FSHD Fetal Human Muscle Biopsies. PLoS ONE, 2015, 10, e0116853.	2.5	17
14	DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics, 2014, 23, 171-181.	2.9	61
15	Differential DNA methylation of the <i>D4Z4</i> repeat in patients with FSHD and asymptomatic carriers. Neurology, 2014, 83, 733-742.	1.1	82
16	Comparative analysis of protein expression of three stem cell populations: Models of cytokine delivery system in vivo. International Journal of Pharmaceutics, 2013, 440, 72-82.	5.2	42
17	P.16.3 DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Neuromuscular Disorders, 2013, 23, 823.	0.6	0
18	P.16.6 Modification of 4q35 and muscular gene expression in fetuses carrying a shortened D4Z4 array linked to FSHD. Neuromuscular Disorders, 2013, 23, 824.	0.6	0

STEPHANE ROCHE

#	Article	IF	CITATIONS
19	Dysregulation of 4q35- and muscle-specific genes in fetuses with a short D4Z4 array linked to facio-scapulo-humeral dystrophy. Human Molecular Genetics, 2013, 22, 4206-4214.	2.9	45
20	Deregulation of the Protocadherin Gene FAT1 Alters Muscle Shapes: Implications for the Pathogenesis of Facioscapulohumeral Dystrophy. PLoS Genetics, 2013, 9, e1003550.	3.5	73
21	Improvement of 2Dâ€PAGE Resolution of Human, Porcine and Canine Follicular Fluid: Comparison of Two Immunodepletion Columns. Reproduction in Domestic Animals, 2012, 47, e67-70.	1.4	3
22	Decreased sAβPPβ, Aβ38, and Aβ40 Cerebrospinal Fluid Levels in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2011, 26, 553-563.	2.6	65
23	Proteomic analysis of mare follicular fluid during late follicle development. Proteome Science, 2011, 9, 54.	1.7	50
24	Two Dimensional Gel Electrophoresis Analysis of Mesenchymal Stem Cells. Methods in Molecular Biology, 2011, 698, 431-442.	0.9	3
25	Proteomic consequences of expression and pathological conversion of the prion protein in inducible neuroblastoma N2a cells. Prion, 2010, 4, 292-301.	1.8	13
26	Correlations between soluble α/β forms of amyloid precursor protein and Aβ38, 40, and 42 in human cerebrospinal fluid. Brain Research, 2010, 1357, 175-183.	2.2	69
27	Comparative proteomic analysis of human mesenchymal and embryonic stem cells: Towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 2009, 9, 223-232.	2.2	82
28	Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: The more the better?. Journal of Proteomics, 2009, 72, 945-951.	2.4	89
29	Clinical proteomics of the cerebrospinal fluid: Towards the discovery of new biomarkers. Proteomics - Clinical Applications, 2008, 2, 428-436.	1.6	88
30	Identification of apolipoprotein Câ€III as a potential plasmatic biomarker associated with the resolution of hepatitis C virus infection. Proteomics - Clinical Applications, 2008, 2, 751-761.	1.6	9
31	Cell specific differences between human adipose-derived and mesenchymal–stromal cells despite similar differentiation potentials. Experimental Cell Research, 2008, 314, 1575-1584.	2.6	316
32	Autoantibody profiling on high-density protein microarrays for biomarker discovery in the cerebrospinal fluid. Journal of Immunological Methods, 2008, 338, 75-78.	1.4	11
33	Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2008, 67, 741-749.	0.9	139
34	Homologous Recombination is Involved in the Repair Response of Mammalian Cells to Low Doses of Tritium. Radiation Research, 2008, 170, 172-183.	1.5	9
35	Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. Journal of Cellular Biochemistry, 2007, 101, 271-280.	2.6	46
36	Proteomics of primary mesenchymal stem cells. Regenerative Medicine, 2006, 1, 511-517.	1.7	21

STEPHANE ROCHE

#	Article	IF	CITATIONS
37	Interest of major serum protein removal for Surface-Enhanced Laser Desorption/Ionization - Time Of Flight (SELDI-TOF) proteomic blood profiling. Proteome Science, 2006, 4, 20.	1.7	35
38	Comparison between surface and bead-based MALDI profiling technologies using a single bioinformatics algorithm. Clinical Proteomics, 2006, 2, 145-152.	2.1	1
39	Ascorbate modulation of bovine chondrocyte growth, matrix protein gene expression and synthesis in three-dimensional collagen sponges. Biomaterials, 2003, 24, 851-861.	11.4	50
40	Regulation of growth, protein synthesis, and maturation of fetal bovine epiphyseal chondrocytes grown in high-density culture in the presence of ascorbic acid, retinoic acid, and dihydrocytochalasin B. , 2000, 76, 84-98.		23
41	Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials, 2000, 22, 9-18.	11.4	96