Stephane Roche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794473/publications.pdf

Version: 2024-02-01

41 papers

1,778 citations

³⁶¹⁴¹³
20
h-index

302126 39 g-index

44 all docs

44 docs citations

times ranked

44

2838 citing authors

#	Article	IF	CITATIONS
1	Cell specific differences between human adipose-derived and mesenchymal–stromal cells despite similar differentiation potentials. Experimental Cell Research, 2008, 314, 1575-1584.	2.6	316
2	Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2008, 67, 741-749.	0.9	139
3	Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials, 2000, 22, 9-18.	11.4	96
4	Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: The more the better?. Journal of Proteomics, 2009, 72, 945-951.	2.4	89
5	Clinical proteomics of the cerebrospinal fluid: Towards the discovery of new biomarkers. Proteomics - Clinical Applications, 2008, 2, 428-436.	1.6	88
6	Comparative proteomic analysis of human mesenchymal and embryonic stem cells: Towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 2009, 9, 223-232.	2.2	82
7	Differential DNA methylation of the <i>D4Z4</i> repeat in patients with FSHD and asymptomatic carriers. Neurology, 2014, 83, 733-742.	1.1	82
8	Deregulation of the Protocadherin Gene FAT1 Alters Muscle Shapes: Implications for the Pathogenesis of Facioscapulohumeral Dystrophy. PLoS Genetics, 2013, 9, e1003550.	3. 5	73
9	Correlations between soluble $\hat{l}\pm\hat{l}^2$ forms of amyloid precursor protein and \hat{Al}^2 38, 40, and 42 in human cerebrospinal fluid. Brain Research, 2010, 1357, 175-183.	2.2	69
10	Decreased sAÎ ² PPÎ ² , AÎ ² 38, and AÎ ² 40 Cerebrospinal Fluid Levels in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2011, 26, 553-563.	2.6	65
11	DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Human Molecular Genetics, 2014, 23, 171-181.	2.9	61
12	Ascorbate modulation of bovine chondrocyte growth, matrix protein gene expression and synthesis in three-dimensional collagen sponges. Biomaterials, 2003, 24, 851-861.	11.4	50
13	Proteomic analysis of mare follicular fluid during late follicle development. Proteome Science, 2011, 9, 54.	1.7	50
14	Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. Journal of Cellular Biochemistry, 2007, 101, 271-280.	2.6	46
15	Dysregulation of 4q35- and muscle-specific genes in fetuses with a short D4Z4 array linked to facio-scapulo-humeral dystrophy. Human Molecular Genetics, 2013, 22, 4206-4214.	2.9	45
16	Comparative analysis of protein expression of three stem cell populations: Models of cytokine delivery system in vivo. International Journal of Pharmaceutics, 2013, 440, 72-82.	5.2	42
17	SMCHD1 is involved in <i>de novo</i> methylation of the <i>DUX4</i> encoding D4Z4 macrosatellite. Nucleic Acids Research, 2019, 47, 2822-2839.	14.5	39
18	Molecular combing reveals complex 4q35 rearrangements in Facioscapulohumeral dystrophy. Human Mutation, 2017, 38, 1432-1441.	2.5	39

#	Article	IF	Citations
19	Interest of major serum protein removal for Surface-Enhanced Laser Desorption/Ionization - Time Of Flight (SELDI-TOF) proteomic blood profiling. Proteome Science, 2006, 4, 20.	1.7	35
20	Correlation between low <scp>FAT</scp> 1 expression and early affected muscle in facioscapulohumeral muscular dystrophy. Annals of Neurology, 2015, 78, 387-400.	5.3	32
21	Deciphering the complexity of the 4q and 10q subtelomeres by molecular combing in healthy individuals and patients with facioscapulohumeral dystrophy. Journal of Medical Genetics, 2019, 56, 590-601.	3.2	24
22	Regulation of growth, protein synthesis, and maturation of fetal bovine epiphyseal chondrocytes grown in high-density culture in the presence of ascorbic acid, retinoic acid, and dihydrocytochalasin B., 2000, 76, 84-98.		23
23	Proteomics of primary mesenchymal stem cells. Regenerative Medicine, 2006, 1, 511-517.	1.7	21
24	Sample Pooling and Inflammation Linked to the False Selection of Biomarkers for Neurodegenerative Diseases in Top–Down Proteomics: A Pilot Study. Frontiers in Molecular Neuroscience, 2018, 11, 477.	2.9	20
25	miRNA Expression in Control and FSHD Fetal Human Muscle Biopsies. PLoS ONE, 2015, 10, e0116853.	2.5	17
26	Methylation hotspots evidenced by deep sequencing in patients with facioscapulohumeral dystrophy and mosaicism. Neurology: Genetics, 2019, 5, e372.	1.9	16
27	Proteomic consequences of expression and pathological conversion of the prion protein in inducible neuroblastoma N2a cells. Prion, 2010, 4, 292-301.	1.8	13
28	Segregation between SMCHD1 mutation, D4Z4 hypomethylation and Facio-Scapulo-Humeral Dystrophy: a case report. BMC Medical Genetics, 2016, 17, 66.	2.1	13
29	Analysis of the 4q35 chromatin organization reveals distinct long-range interactions in patients affected with Facio-Scapulo-Humeral Dystrophy. Scientific Reports, 2019, 9, 10327.	3.3	12
30	Autoantibody profiling on high-density protein microarrays for biomarker discovery in the cerebrospinal fluid. Journal of Immunological Methods, 2008, 338, 75-78.	1.4	11
31	In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. Nanomaterials, 2019, 9, 1233.	4.1	11
32	Identification of apolipoprotein Câ€III as a potential plasmatic biomarker associated with the resolution of hepatitis C virus infection. Proteomics - Clinical Applications, 2008, 2, 751-761.	1.6	9
33	Homologous Recombination is Involved in the Repair Response of Mammalian Cells to Low Doses of Tritium. Radiation Research, 2008, 170, 172-183.	1.5	9
34	Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2019, 12, e002500.	3.6	9
35	Improvement of 2Dâ€PAGE Resolution of Human, Porcine and Canine Follicular Fluid: Comparison of Two Immunodepletion Columns. Reproduction in Domestic Animals, 2012, 47, e67-70.	1.4	3
36	Two Dimensional Gel Electrophoresis Analysis of Mesenchymal Stem Cells. Methods in Molecular Biology, 2011, 698, 431-442.	0.9	3

#	Article	IF	CITATIONS
37	Type 1 FSHD with 6–10 Repeated Units: Factors Underlying Severity in Index Cases and Disease Penetrance in Their Relatives Attention. International Journal of Molecular Sciences, 2020, 21, 2221.	4.1	2
38	Comparison between surface and bead-based MALDI profiling technologies using a single bioinformatics algorithm. Clinical Proteomics, 2006, 2, 145-152.	2.1	1
39	P.16.3 DUX4 and DUX4 downstream target genes are expressed in fetal FSHD muscles. Neuromuscular Disorders, 2013, 23, 823.	0.6	O
40	P.16.6 Modification of 4q35 and muscular gene expression in fetuses carrying a shortened D4Z4 array linked to FSHD. Neuromuscular Disorders, 2013, 23, 824.	0.6	0
41	Correlation between low FAT1 expression and early affected muscle in FSHD. Neuromuscular Disorders, 2015, 25, S312.	0.6	0