Cristina Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944348/publications.pdf

Version: 2024-02-01

43 papers 2,420 citations

331670 21 h-index 289244 40 g-index

44 all docs 44 docs citations

times ranked

44

3192 citing authors

#	Article	lF	CITATIONS
1	Cannabinoids in Breast Cancer: Differential Susceptibility According to Subtype. Molecules, 2022, 27, 156.	3.8	14
2	Discovery of a multi-target compound for estrogen receptor-positive (ER+) breast cancer: Involvement of aromatase and ERs. Biochimie, 2021, 181, 65-76.	2.6	16
3	Unveiling the mechanism of action behind the anti-cancer properties of cannabinoids in ER+ breast cancer cells: Impact on aromatase and steroid receptors. Journal of Steroid Biochemistry and Molecular Biology, 2021, 210, 105876.	2.5	16
4	Cannabidiol disrupts apoptosis, autophagy and invasion processes of placental trophoblasts. Archives of Toxicology, 2021, 95, 3393-3406.	4.2	14
5	Effects of PI3K inhibition in Al-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Research and Treatment, 2021, 190, 227-240.	2.5	2
6	The anti-cancer potential of crotoxin in estrogen receptor-positive breast cancer: Its effects and mechanism of action. Toxicon, 2021, 200, 69-77.	1.6	11
7	Differential biological effects of aromatase inhibitors: Apoptosis, autophagy, senescence and modulation of the hormonal status in breast cancer cells. Molecular and Cellular Endocrinology, 2021, 537, 111426.	3.2	7
8	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 4	·62.Td (edition
9	The potential clinical benefit of targeting androgen receptor (AR) in estrogen-receptor positive breast cancer cells treated with Exemestane. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165661.	3.8	10
10	Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicology Letters, 2020, 319, 129-137.	0.8	25
11	Cannabidiol (CBD) but not tetrahydrocannabinol (THC) dysregulate in vitro decidualization of human endometrial stromal cells by disruption of estrogen signaling. Reproductive Toxicology, 2020, 93, 75-82.	2.9	21
12	Cannabis sativa: Much more beyond î"9-tetrahydrocannabinol. Pharmacological Research, 2020, 157, 104822.	7.1	75
13	Estrogen receptor-positive (ER+) breast cancer treatment: Are multi-target compounds the next promising approach?. Biochemical Pharmacology, 2020, 177, 113989.	4.4	35
14	A novel GC-MS methodology to evaluate aromatase activity in human placental microsomes: a comparative study with the standard radiometric assay. Analytical and Bioanalytical Chemistry, 2019, 411, 7005-7013.	3.7	1
15	Anandamide targets aromatase: A breakthrough on human decidualization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158512.	2.4	13
16	Effects of new C6-substituted steroidal aromatase inhibitors in hormone-sensitive breast cancer cells: Cell death mechanisms and modulation of estrogen and androgen receptors. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105486.	2.5	15
17	Chemical composition and anti-cancer properties of Juniperus oxycedrus L. essential oils on estrogen receptor-positive breast cancer cells. Journal of Functional Foods, 2019, 59, 261-271.	3.4	21
18	C-6α- vs C-7α-Substituted Steroidal Aromatase Inhibitors: Which Is Better? Synthesis, Biochemical Evaluation, Docking Studies, and Structure–Activity Relationships. Journal of Medicinal Chemistry, 2019, 62, 3636-3657.	6.4	25

#	Article	IF	Citations
19	Acquired resistance to aromatase inhibitors: where we stand!. Endocrine-Related Cancer, 2018, 25, R283-R301.	3.1	74
20	Hormone-dependent breast cancer: Targeting autophagy and PI3K overcomes Exemestane-acquired resistance. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 51-61.	2.5	29
21	The involvement of autophagy in the acquired resistance to third-generation aromatase inhibitors. Free Radical Biology and Medicine, 2018, 120, S118.	2.9	0
22	Anandamide oxidative metabolism-induced endoplasmic reticulum stress and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 816-826.	4.9	18
23	The synthetic cannabinoid WIN-55,212 induced-apoptosis in cytotrophoblasts cells by a mechanism dependent on CB1 receptor. Toxicology, 2017, 385, 67-73.	4.2	16
24	Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of \hat{l}^2 -keto amphetamines-related neurotoxicity. Archives of Toxicology, 2017, 91, 3663-3676.	4.2	50
25	The role of soybean extracts and isoflavones in hormone-dependent breast cancer: aromatase activity and biological effects. Food and Function, 2017, 8, 3064-3074.	4.6	28
26	Anti-tumor efficacy of new $7l\pm$ -substituted androstanes as aromatase inhibitors in hormone-sensitive and resistant breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 218-228.	2.5	24
27	Exploring new chemical functionalities to improve aromatase inhibition of steroids. Bioorganic and Medicinal Chemistry, 2016, 24, 2823-2831.	3.0	13
28	Unveiling the mechanisms of exemestane-acquired resistance: The role of autophagy and PI3K pathway. European Journal of Cancer, 2016, 61, S142.	2.8	0
29	The endocannabinoid anandamide impairs in vitro decidualization of human cells. Reproduction, 2016, 152, 351-361.	2.6	32
30	Unravelling exemestane: From biology to clinical prospects. Journal of Steroid Biochemistry and Molecular Biology, 2016, 163, 1-11.	2.5	36
31	Cannabinoid-induced autophagy: Protective or death role?. Prostaglandins and Other Lipid Mediators, 2016, 122, 54-63.	1.9	36
32	Anandamide interferes with human endometrial stromalâ€derived cell differentiation: An effect dependent on inhibition of cyclooxygenaseâ€2 expression and prostaglandin E ₂ release. BioFactors, 2016, 42, 277-286.	5.4	15
33	Exemestane metabolites suppress growth of estrogen receptor-positive breast cancer cells by inducing apoptosis and autophagy: A comparative study with Exemestane. International Journal of Biochemistry and Cell Biology, 2015, 69, 183-195.	2.8	23
34	Exemestane metabolites: Synthesis, stereochemical elucidation, biochemical activity and anti-proliferative effects in a hormone-dependent breast cancer cell line. European Journal of Medicinal Chemistry, 2014, 87, 336-345.	5.5	33
35	Steroidal aromatase inhibitors inhibit growth of hormone-dependent breast cancer cells by inducing cell cycle arrest and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1426-1436.	4.9	22
36	New steroidal $17\hat{1}^2$ -carboxy derivatives present anti- $5\hat{1}$ ±-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line. Biochimie, 2013, 95, 2097-2106.	2.6	11

#	Article	IF	Citations
37	Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: Aromatase inhibition and autophagy. Journal of Steroid Biochemistry and Molecular Biology, 2013, 135, 51-59.	2.5	32
38	Development of a new gas chromatography–mass spectrometry (GC–MS) methodology for the evaluation of 5α-reductase activity. Talanta, 2013, 107, 154-161.	5.5	16
39	Design, synthesis and biochemical studies of new 7α-allylandrostanes as aromatase inhibitors. Steroids, 2013, 78, 662-669.	1.8	25
40	Apoptosis and Autophagy in Breast Cancer Cells following Exemestane Treatment. PLoS ONE, 2012, 7, e42398.	2.5	55
41	New Structure–Activity Relationships of A- and D-Ring Modified Steroidal Aromatase Inhibitors: Design, Synthesis, and Biochemical Evaluation. Journal of Medicinal Chemistry, 2012, 55, 3992-4002.	6.4	60
42	Quantitative analysis of five sterols in amniotic fluid by GC–MS: Application to the diagnosis of cholesterol biosynthesis defects. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2130-2136.	2.3	21
43	A novel approach for ER ⁺ breast cancer treatment: A new compound that modulates aromatase and ER., 0,,.		0