David M Ornitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7943630/publications.pdf

Version: 2024-02-01

218 papers 33,051 citations

4388 86 h-index ³⁹¹⁵
177
g-index

231 all docs

231 docs citations

231 times ranked

27062 citing authors

#	Article	IF	CITATIONS
1	Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 1991, 64, 841-848.	28.9	2,430
2	Fibroblast growth factors. Genome Biology, 2001, 2, reviews3005.1.	9.6	1,562
3	The Fibroblast Growth Factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 215-266.	5.9	1,492
4	Receptor Specificity of the Fibroblast Growth Factor Family. Journal of Biological Chemistry, 1996, 271, 15292-15297.	3.4	1,491
5	Receptor Specificity of the Fibroblast Growth Factor Family. Journal of Biological Chemistry, 2006, 281, 15694-15700.	3.4	986
6	Evolution of the Fgf and Fgfr gene families. Trends in Genetics, 2004, 20, 563-569.	6.7	941
7	Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genetics, 1996, 12, 390-397.	21.4	828
8	FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes and Development, 2002, 16, 1446-1465.	5.9	786
9	FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays, 2000, 22, 108-112.	2.5	646
10	A Twist Code Determines the Onset of Osteoblast Differentiation. Developmental Cell, 2004, 6, 423-435.	7.0	619
	<u></u>		
11	Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development (Cambridge), 2005, 132, 49-60.	2.5	593
11	Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development (Cambridge), 2005, 132, 49-60. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034.	2.5 7.1	593 576
	(Cambridge), 2005, 132, 49-60. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of		
12	(Cambridge), 2005, 132, 49-60. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the	7.1	576
12 13	(Cambridge), 2005, 132, 49-60. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development (Cambridge), 2003, 130, 3063-3074. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and	7.1 2.5	576 568
12 13 14	(Cambridge), 2005, 132, 49-60. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development (Cambridge), 2003, 130, 3063-3074. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. Journal of Biochemistry, 2011, 149, 121-130.	7.1 2.5 1.7	576 568 546
12 13 14	(Cambridge), 2005, 132, 49-60. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development (Cambridge), 2003, 130, 3063-3074. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. Journal of Biochemistry, 2011, 149, 121-130. Male-to-Female Sex Reversal in Mice Lacking Fibroblast Growth Factor 9. Cell, 2001, 104, 875-889. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and	7.1 2.5 1.7 28.9	576 568 546 526

#	Article	IF	Citations
19	Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes and Development, 2002, 16, 859-869.	5.9	421
20	Twist Regulates Cytokine Gene Expression through a Negative Feedback Loop that Represses NF-κB Activity. Cell, 2003, 112, 169-180.	28.9	417
21	Interaction of FGF, Ihh/Pthlh, and BMP Signaling Integrates Chondrocyte Proliferation and Hypertrophic Differentiation. Developmental Cell, 2002, 3, 439-449.	7.0	414
22	Conserved Roles for Slit and Robo Proteins in Midline Commissural Axon Guidance. Neuron, 2004, 42, 213-223.	8.1	402
23	Functional evolutionary history of the mouse <i>Fgf</i> gene family. Developmental Dynamics, 2008, 237, 18-27.	1.8	352
24	Endocardial and Epicardial Derived FGF Signals Regulate Myocardial Proliferation and Differentiation In Vivo. Developmental Cell, 2005, 8, 85-95.	7.0	341
25	FGF signaling in the developing endochondral skeleton. Cytokine and Growth Factor Reviews, 2005, 16, 205-213.	7.2	323
26	Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Medicine, 1998, 4, 691-697.	30.7	322
27	Fibroblast growth factor signaling in skeletal development and disease. Genes and Development, 2015, 29, 1463-1486.	5.9	299
28	Mutations that Cause Osteoglophonic Dysplasia Define Novel Roles for FGFR1 in Bone Elongation. American Journal of Human Genetics, 2005, 76, 361-367.	6.2	295
29	Lung hypoplasia and neonatal death in <i>Fgf9</i> -null mice identify this gene as an essential regulator of lung mesenchyme. Development (Cambridge), 2001, 128, 2095-2106.	2.5	285
30	The Mouse SLIT Family: Secreted Ligands for ROBO Expressed in Patterns That Suggest a Role in Morphogenesis and Axon Guidance. Developmental Biology, 1999, 212, 290-306.	2.0	278
31	Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell, 1987, 48, 1023-1034.	28.9	273
32	Fgf9 from dermal $\hat{I}^3\hat{I}^7$ T cells induces hair follicle neogenesis after wounding. Nature Medicine, 2013, 19, 916-923.	30.7	272
33	FGF9 and FGF20 Maintain the Stemness of Nephron Progenitors in Mice and Man. Developmental Cell, 2012, 22, 1191-1207.	7.0	268
34	Specific expression of an elastase–human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature, 1985, 313, 600-602.	27.8	253
35	FGF22 and Its Close Relatives Are Presynaptic Organizing Molecules in the Mammalian Brain. Cell, 2004, 118, 257-270.	28.9	251
36	<i>Fgf9</i> induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development (Cambridge), 2004, 131, 3627-3636.	2.5	236

#	Article	IF	CITATIONS
37	FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms. Cell Metabolism, 2017, 25, 935-944.e4.	16.2	229
38	Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs. Journal of Biological Chemistry, 2003, 278, 34226-34236.	3.4	221
39	Fibroblast Growth Factor Homologous Factors Control Neuronal Excitability through Modulation of Voltage-Gated Sodium Channels. Neuron, 2007, 55, 449-463.	8.1	220
40	Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes and Development, 2006, 20, 1651-1666.	5.9	214
41	Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Developmental Dynamics, 1999, 216, 72-88.	1.8	203
42	FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development (Cambridge), 2006, 133, 1507-1517.	2.5	198
43	Analysis of the Biochemical Mechanisms for the Endocrine Actions of Fibroblast Growth Factor-23. Endocrinology, 2005, 146, 4647-4656.	2.8	192
44	FGF signaling in skeletal development. Frontiers in Bioscience - Landmark, 1998, 3, d781-794.	3.0	188
45	FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Developmental Biology, 2007, 302, 80-91.	2.0	178
46	Ataxia and Paroxysmal Dyskinesia in Mice Lacking Axonally Transported FGF14. Neuron, 2002, 35, 25-38.	8.1	173
47	Abnormalities in cartilage and bone development in the Apert syndrome FGFR2+/S252W mouse. Development (Cambridge), 2005, 132, 3537-3548.	2.5	172
48	Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. Journal of Physiology, 2005, 569, 179-193.	2.9	169
49	Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Developmental Biology, 2006, 296, 315-328.	2.0	167
50	Achondroplasia: Development, pathogenesis, and therapy. Developmental Dynamics, 2017, 246, 291-309.	1.8	160
51	Osx-Cre Targets Multiple Cell Types besides Osteoblast Lineage in Postnatal Mice. PLoS ONE, 2014, 9, e85161.	2.5	158
52	Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Developmental Biology, 2008, 318, 276-288.	2.0	149
53	<i>Fgfr3</i> expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development (Cambridge), 2003, 130, 93-102.	2.5	148
54	Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes and Development, 2006, 20, 2937-2942.	5.9	145

#	Article	IF	Citations
55	FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Developmental Biology, 2007, 307, 300-313.	2.0	133
56	FGF signalling generates ventral telencephalic cells independently of SHH. Development (Cambridge), 2006, 133, 2937-2946.	2.5	132
57	The <i>FGF14 < sup > F145S < /sup > </i> Mutation Disrupts the Interaction of FGF14 with Voltage-Gated Na < sup > + Channels and Impairs Neuronal Excitability. Journal of Neuroscience, 2007, 27, 12033-12044.	3.6	131
58	FGF9 and SHH regulate mesenchymal <i>Vegfa</i> expression and development of the pulmonary capillary network. Development (Cambridge), 2007, 134, 3743-3752.	2.5	131
59	A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking <i>Slit3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5217-5222.	7.1	127
60	An FGF–WNT gene regulatory network controls lung mesenchyme development. Developmental Biology, 2008, 319, 426-436.	2.0	127
61	Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes and Development, 2013, 27, 450-458.	5.9	126
62	Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2009, 284, 17883-17896.	3.4	121
63	Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Human Molecular Genetics, 2003, 13, 271-284.	2.9	118
64	FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Molecular and Cellular Neurosciences, 2009, 42, 90-101.	2.2	117
65	Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. Journal of Cell Biology, 2010, 188, 935-952.	5.2	116
66	Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development (Cambridge), 2001, 128, 5051-5060.	2.5	115
67	Development and Maintenance of Otoconia. Annals of the New York Academy of Sciences, 2001, 942, 162-178.	3.8	112
68	FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiology of Disease, 2009, 33, 81-88.	4.4	112
69	Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1. Human Molecular Genetics, 2003, 12, 777-789.	2.9	111
70	FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development (Cambridge), 2008, 135, 483-491.	2.5	111
71	Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13379-13384.	7.1	111
72	Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development (Cambridge), 2001, 128, 3867-3876.	2.5	105

#	Article	IF	Citations
73	FGF9 monomer–dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nature Genetics, 2009, 41, 289-298.	21.4	104
74	Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development (Cambridge), 2011, 138, 3169-3177.	2.5	103
75	Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Reports, 2016, 14, 82-92.	6.4	103
76	Otopetrin 1 is required for otolith formation in the zebrafish Danio rerio. Developmental Biology, 2004, 276, 391-402.	2.0	100
77	Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mechanisms of Development, 1999, 83, 165-178.	1.7	98
78	Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. Development (Cambridge), 2007, 134, 723-734.	2.5	98
79	Heparin-induced Self-association of Fibroblast Growth Factor-2. Journal of Biological Chemistry, 1997, 272, 16382-16389.	3.4	97
80	Differentiation of the Lateral Compartment of the Cochlea Requires a Temporally Restricted FGF20 Signal. PLoS Biology, 2012, 10, e1001231.	5.6	97
81	FGF receptors 1 and 2 are key regulators of keratinocyte migration <i>in vitro</i> and in wounded skin. Journal of Cell Science, 2012, 125, 5690-5701.	2.0	96
82	Fibroblast Growth Factor Receptor 3 Signaling Regulates the Onset of Oligodendrocyte Terminal Differentiation. Journal of Neuroscience, 2003, 23, 883-894.	3.6	93
83	FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development (Cambridge), 2011, 138, 3331-3340.	2.5	93
84	Otoconial agenesis in tilted mutant mice. Hearing Research, 1998, 122, 60-70.	2.0	92
85	Stat1 Controls Postnatal Bone Formation by Regulating Fibroblast Growth Factor Signaling in Osteoblasts. Journal of Biological Chemistry, 2004, 279, 27743-27752.	3.4	92
86	Fibroblast growth factor expression during skeletal fracture healing in mice. Developmental Dynamics, 2009, 238, 766-774.	1.8	92
87	Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent. Developmental Cell, 2019, 48, 32-48.e5.	7.0	91
88	Mixing model systems: Using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Research, 2006, 1091, 58-74.	2.2	90
89	Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation. Development (Cambridge), 2006, 133, 3473-3484.	2.5	89
90	Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. Journal of Clinical Investigation, 2008, 118, 2404-14.	8.2	89

#	Article	IF	Citations
91	Expression and Biological Activity of Mouse Fibroblast Growth Factor-9. Journal of Biological Chemistry, 1996, 271, 1726-1731.	3.4	87
92	Subcellular and developmental expression of alternatively spliced forms of fibroblast growth factor 14. Mechanisms of Development, 2000, 90, 283-287.	1.7	85
93	Fibroblast Growth Factor Receptors Cooperate to Regulate Neural Progenitor Properties in the Developing Midbrain and Hindbrain. Journal of Neuroscience, 2007, 27, 8581-8592.	3.6	85
94	Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. Neurobiology of Disease, 2007, 26, 14-26.	4.4	81
95	Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development (Cambridge), 2012, 139, 3189-3199.	2.5	81
96	Fgf9 signaling regulates inner ear morphogenesis through epithelial–mesenchymal interactions. Developmental Biology, 2004, 273, 350-360.	2.0	78
97	Regulation of Osteocalcin Gene Expression by a Novel Ku Antigen Transcription Factor Complex. Journal of Biological Chemistry, 2002, 277, 37280-37291.	3.4	75
98	Fibroblast Growth Factor 2 Is Required for Epithelial Recovery, but Not for Pulmonary Fibrosis, in Response to Bleomycin. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 116-128.	2.9	75
99	Impaired hippocampal synaptic transmission and plasticity in mice lacking fibroblast growth factor 14. Molecular and Cellular Neurosciences, 2007, 34, 366-377.	2.2	74
100	Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development (Cambridge), 2008, 135, 3161-3171.	2.5	74
101	Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development. Development (Cambridge), 2006, 133, 173-180.	2.5	7 3
102	Fgf9 signaling regulates small intestinal elongation and mesenchymal development. Development (Cambridge), 2008, 135, 2959-2968.	2.5	73
103	Analysis of a gain-of-function FGFR2 Crouzon mutation provides evidence of loss of function activity in the etiology of cleft palate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2515-2520.	7.1	70
104	Mapping Ligand Binding Domains in Chimeric Fibroblast Growth Factor Receptor Molecules. Journal of Biological Chemistry, 1999, 274, 34785-34794.	3.4	68
105	Sulfated Hydrogel Matrices Direct Mitogenicity and Maintenance of Chondrocyte Phenotype through Activation of FGF Signaling. Advanced Functional Materials, 2016, 26, 3649-3662.	14.9	68
106	Transplanted Oligodendrocyte Progenitor Cells Expressing a Dominant-Negative FGF Receptor Transgene Fail to Migrate < i>In Vivo < /i> Journal of Neuroscience, 1997, 17, 9122-9132.	3.6	67
107	Expression of FGFR3 with the G380R Achondroplasia Mutation Inhibits Proliferation and Maturation of CFK2 Chondrocytic Cells. Journal of Bone and Mineral Research, 2000, 15, 155-165.	2.8	67
108	Signaling through FGF receptorâ€2 is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Developmental Dynamics, 2005, 233, 516-527.	1.8	67

#	Article	IF	Citations
109	Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. Matrix Biology, 2007, 26, 175-184.	3.6	67
110	Fibroblast growth factor 2 decreases bleomycinâ€induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. Journal of Pathology, 2018, 246, 54-66.	4.5	65
111	Signaling Networks Regulating Development of the Lower Respiratory Tract. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008318-a008318.	5.5	64
112	Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. ELife, 2015, 4, .	6.0	63
113	Overlapping Expression and Redundant Activation of Mesenchymal Fibroblast Growth Factor (FGF) Receptors by Alternatively Spliced FGF-8 Ligands. Journal of Biological Chemistry, 1997, 272, 3733-3738.	3.4	62
114	Signalling by fibroblast growth factor receptor 3 and parathyroid hormone-related peptide coordinate cartilage and bone development. Bone, 2004, 34, 13-25.	2.9	61
115	Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. Journal of Neuroscience, 2015, 35, 6752-6769.	3.6	61
116	Identification of the Cytoplasmic Regions of Fibroblast Growth Factor (FGF) Receptor 1 Which Play Important Roles in Induction of Neurite Outgrowth in PC12 Cells by FGF-1. Molecular and Cellular Biology, 1998, 18, 3762-3770.	2.3	60
117	Histomorphological study of palatal shelf elevation during murine secondary palate formation. Developmental Dynamics, 2011, 240, 1737-1744.	1.8	59
118	FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development (Cambridge), 2016, 143, 1811-22.	2.5	56
119	Delineating a Conserved Genetic Cassette Promoting Outgrowth of Body Appendages. PLoS Genetics, 2013, 9, e1003231.	3.5	55
120	Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 86-96.	2.4	54
121	A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development. Developmental Biology, 2016, 411, 72-84.	2.0	52
122	New developments in the biology of fibroblast growth factors. WIREs Mechanisms of Disease, 2022, 14, e1549.	3.3	52
123	Shared Circuitry. Circulation Research, 2009, 104, 159-169.	4.5	51
124	Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends in Genetics, 2008, 24, 33-40.	6.7	50
125	Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. Journal of Biological Chemistry, 2017, 292, 10364-10378.	3.4	50
126	Model for the Pharmacologic Treatment of Crouzon Syndrome. Neurosurgery, 2006, 59, 210-215.	1.1	49

#	Article	IF	Citations
127	Rapid Induction of Lung Adenocarcinoma by Fibroblast Growth Factor 9 Signaling through FGF Receptor 3. Cancer Research, 2013, 73, 5730-5741.	0.9	49
128	Regulation of the Fibroblast Growth Factor Receptor 3 Promoter and Intron I Enhancer by Sp1 Family Transcription Factors. Journal of Biological Chemistry, 1998, 273, 5349-5357.	3.4	48
129	FGF14 localization and organization of the axon initial segment. Molecular and Cellular Neurosciences, 2013, 56, 393-403.	2.2	48
130	FGF Receptors 1 and 2 Control Chemically Induced Injury and Compound Detoxification in Regenerating Livers of Mice. Gastroenterology, 2010, 139, 1385-1396.e8.	1.3	47
131	Effect of FGF/FGFR pathway blocking on lung adenocarcinoma and its cancerâ€∎ssociated fibroblasts. Journal of Pathology, 2019, 249, 193-205.	4.5	47
132	Microscale analysis of proteins in inner ear tissues and fluids with emphasis on endolymphatic sac, otoconia, and organ of Corti. Electrophoresis, 2006, 27, 1598-1608.	2.4	46
133	Fibroblast growth factors in skeletal development. Current Topics in Developmental Biology, 2019, 133, 195-234.	2.2	46
134	\hat{l}^2 -catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1. Development (Cambridge), 2010, 137, 1137-1147.	2.5	45
135	Healing of non-displaced fractures produced by fatigue loading of the mouse ulna. Bone, 2010, 46, 1604-1612.	2.9	45
136	Inhibition or Activation of Apert Syndrome FGFR2 (S252W) Signaling by Specific Glycosaminoglycans. Journal of Biological Chemistry, 2006, 281, 6924-6930.	3.4	44
137	Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix. Molecular and Cellular Biology, 2009, 29, 4663-4678.	2.3	44
138	FGFR2 Is Required for AEC2 Homeostasis and Survival after Bleomycin-induced Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 608-621.	2.9	44
139	FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Science Signaling, 2020, 13, .	3.6	43
140	Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H559-H571.	3.2	41
141	Regulation of Cellular Calcium in Vestibular Supporting Cells by Otopetrin 1. Journal of Neurophysiology, 2010, 104, 3439-3450.	1.8	40
142	Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma. PLoS Genetics, 2015, 11, e1005242.	3.5	38
143	Otopetrin 1 activation by purinergic nucleotides regulates intracellular calcium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12023-12028.	7.1	37
144	Regulation of Chondrocyte Growth and Differentiation by Fibroblast Growth Factor Receptor 3. Novartis Foundation Symposium, 2008, 232, 63-80.	1.1	36

#	Article	IF	Citations
145	Fibroblast Growth Factor Receptor 1 Signaling in Adult Cardiomyocytes Increases Contractility and Results in a Hypertrophic Cardiomyopathy. PLoS ONE, 2013, 8, e82979.	2.5	36
146	Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells. Molecular and Cellular Neurosciences, 2011, 46, 655-661.	2.2	34
147	The Fibroblast Growth Factor Receptor-1 Is Necessary for the Induction of Neurite Outgrowth in PC12 Cells by aFGF. Journal of Neuroscience, 1996, 16, 4579-4587.	3.6	33
148	Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Scientific Reports, 2016, 6, 23326.	3.3	31
149	Identification of the Otopetrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members. BMC Evolutionary Biology, 2008, 8, 41.	3.2	30
150	Region-specific regulation of cell proliferation by FGF receptor signaling during the Wolffian duct development. Developmental Biology, 2015, 400, 139-147.	2.0	30
151	Identification of an FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development (Cambridge), 2020, 147, .	2.5	30
152	In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90. PLoS ONE, 2014, 9, e95333.	2.5	28
153	Fibroblast growth factor 2 is an essential cardioprotective factor in a closed-chest model of cardiac ischemia-reperfusion injury. Physiological Reports, 2015, 3, e12278.	1.7	28
154	Rebuilding the Coronary Vasculature: Hedgehog as a New Candidate for Pharmacologic Revascularization. Trends in Cardiovascular Medicine, 2007, 17, 77-83.	4.9	26
155	FGF2-induced STAT3 activation regulates pathologic neovascularization. Experimental Eye Research, 2019, 187, 107775.	2.6	26
156	Osteocyte Death and Bone Overgrowth in Mice Lacking Fibroblast Growth Factor Receptors 1 and 2 in Mature Osteoblasts and Osteocytes. Journal of Bone and Mineral Research, 2019, 34, 1660-1675.	2.8	26
157	OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood, 2014, 124, 2948-2952.	1.4	24
158	FGF20-Expressing, Wnt-Responsive Olfactory Epithelial Progenitors Regulate Underlying Turbinate Growth to Optimize Surface Area. Developmental Cell, 2018, 46, 564-580.e5.	7.0	24
159	\hat{l}^2 -Catenin is required for radial cell patterning and identity in the developing mouse cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21054-21060.	7.1	24
160	Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	8.2	24
161	Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma. Journal of Pathology, 2015, 235, 593-605.	4.5	23
162	Generation and validation of novel conditional flox and inducible Cre alleles targeting fibroblast growth factor 18 (<i>Fgf18</i>). Developmental Dynamics, 2019, 248, 882-893.	1.8	23

#	Article	IF	Citations
163	Fibroblast Growth Factor Receptor 3 Gene Transcription Is Suppressed by Cyclic Adenosine $3\hat{a}\in ^2$, $5\hat{a}\in ^2$ -Monophosphate. Journal of Biological Chemistry, 1999, 274, 30934-30942.	3.4	22
164	In vitro effects of recombinant otoconin 90 upon calcite crystal growth. Significance of tertiary structure. Hearing Research, 2010, 268, 172-183.	2.0	22
165	Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation. Developmental Dynamics, 2015, 244, 1427-1438.	1.8	22
166	Tumor associated macrophages support the growth of FGF9-induced lung adenocarcinoma by multiple mechanisms. Lung Cancer, 2018, 119, 25-35.	2.0	22
167	Neural crest-derived neurons invade the ovary but not the testis during mouse gonad development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5570-5575.	7.1	21
168	Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Developmental Dynamics, 2008, 237, 713-724.	1.8	19
169	Impaired tumor growth and angiogenesis in mice heterozygous for Vegfr2 (Flk1). Scientific Reports, 2018, 8, 14724.	3.3	19
170	Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice. PLoS Genetics, 2016, 12, e1006510.	3.5	18
171	Characterisation of endogenous players in fibroblast growth factorâ€regulated functions of hypothalamic tanycytes and energyâ€balance nuclei. Journal of Neuroendocrinology, 2019, 31, e12750.	2.6	18
172	Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Scientific Reports, 2017, 7, 5049.	3.3	17
173	Sox2 and FGF20 interact to regulate organ of Corti hair cell and supporting cell development in a spatially-graded manner. PLoS Genetics, 2019, 15, e1008254.	3.5	17
174	Synthesis and Fibroblast Growth Factor Binding of Oligosaccharides Related to Heparin and Heparan Sulphate. Journal of Carbohydrate Chemistry, 1995, 14, 95-113.	1.1	16
175	Molecular mechanisms underlying ectopic otoconia-like particles in the endolymphatic sac of embryonic mice. Hearing Research, 2004, 194, 65-72.	2.0	16
176	Lineage-specific evolution of the vertebrate Otopetringene family revealed by comparative genomic analyses. BMC Evolutionary Biology, 2011, 11, 23.	3.2	16
177	ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control. Journal of Clinical Investigation, 2021, 131, .	8.2	16
178	Inhibition of FGF Receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody. DMM Disease Models and Mechanisms, 2016, 9, 563-71.	2.4	15
179	Tissue-specific Expression of Pancreatic Genes in Transgenic Mice. Annals of the New York Academy of Sciences, 1986, 478, 131-146.	3.8	14
180	Dual Transgene Expression in Murine Cerebellar Purkinje Neurons by Viral Transduction In Vivo. PLoS ONE, 2014, 9, e104062.	2.5	14

#	Article	lF	CITATIONS
181	Engineering a Cysteine-Free Form of Human Fibroblast Growth Factor-1 for "Second Generation― Therapeutic Application. Journal of Pharmaceutical Sciences, 2016, 105, 1444-1453.	3.3	14
182	Role of Fgf receptor 2c in adipocyte hypertrophy in mesenteric white adipose tissue. Molecular and Cellular Endocrinology, 2008, 287, 13-19.	3.2	13
183	FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biology, 2020, 18, 87.	3.8	13
184	Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer. Cancer Research, 2021, 81, 3916-3929.	0.9	13
185	Physical Mapping of the Mouse Tilted Locus Identifies an Association between Human Deafness Loci DFNA6/14 and Vestibular System Development. Genomics, 2001, 77, 189-199.	2.9	12
186	Sculpting the skull through neurosensory epithelial–mesenchymal signaling. Developmental Dynamics, 2019, 248, 88-97.	1.8	12
187	Determination of Fibroblast Growth Factor Receptor Expression in Mouse, Rat and Human Samples Using a Single Primer Pair. BioTechniques, 1997, 22, 1068-1070.	1.8	11
188	High-resolution mapping of tlt, a mouse mutant lacking otoconia. Mammalian Genome, 1999, 10, 544-548.	2.2	11
189	Diagnosis and Pathophysiological Mechanisms of Group 3 Hypoxia-Induced Pulmonary Hypertension. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 16.	0.9	11
190	The Fgf8 subfamily (Fgf8, Fgf17 and Fgf18) is required for closure of the embryonic ventral body wall. Development (Cambridge), 2020, 147, .	2.5	9
191	Proteomic analysis of native cerebellar iFGF14 complexes. Channels, 2016, 10, 297-312.	2.8	8
192	A High-Resolution Radiation Hybrid Map of the Proximal Portion of Mouse Chromosome 5. Genomics, 2000, 66, 55-64.	2.9	7
193	Analysis of <scp>FGF20</scp> â€regulated genes in organ of Corti progenitors by translating ribosome affinity purification. Developmental Dynamics, 2020, 249, 1217-1242.	1.8	7
194	FGF20â€FGFR1 signaling through MAPK and PI3K controls sensory progenitor differentiation in the organ of Corti. Developmental Dynamics, 2021, 250, 134-144.	1.8	7
195	Deletion of <i>Fibroblast growth factor 9</i> globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Developmental Dynamics, 2021, 250, 1778-1795.	1.8	7
196	Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Developmental Dynamics, 1999, 216, 72-88.	1.8	7
197	The FGF ligand–receptor signaling system in chondrogenesis, osteogenesis and vascularization of the endochondral skeleton. International Congress Series, 2007, 1302, 67-78.	0.2	6
198	Mouse genetics identifies unique and overlapping functions of fibroblast growth factor receptors in keratinocytes. Journal of Cellular and Molecular Medicine, 2020, 24, 1774-1785.	3.6	6

#	Article	IF	CITATIONS
199	Digenic Variants in the FGF21 Signaling Pathway Associated with Severe Insulin Resistance and Pseudoacromegaly. Journal of the Endocrine Society, 2020, 4, bvaa138.	0.2	6
200	Regenerative responses of rabbit corneal endothelial cells to stimulation by fibroblast growth factor 1 (FGF1) derivatives, TTHX1001 and TTHX1114. Growth Factors, 2021, 39, 14-27.	1.7	6
201	BK1: An FGF-Responsive Central Nervous System-Derived Cell Line. Growth Factors, 1995, 12, 49-55.	1.7	5
202	Mapping the Mouse Otoconin-90 (Oc90) Gene to Chromosome 15. Genomics, 1999, 58, 214-215.	2.9	5
203	Fibroblast growth factor-9 expression in airway epithelial cells amplifies the type I interferon response and alters influenza A virus pathogenesis. PLoS Pathogens, 2022, 18, e1010228.	4.7	5
204	FGF Signaling in Skeletal Development. Fetal and Pediatric Pathology, 1998, 18, 355-379.	0.3	4
205	Crouzon syndrome mouse model exhibits cartilage hyperproliferation and defective segmentation in the developing trachea. Science China Life Sciences, 2019, 62, 1375-1380.	4.9	4
206	Geminin is required for Hox gene regulation to pattern the developing limb. Developmental Biology, 2020, 464, 11-23.	2.0	3
207	Fibroblast Growth Factor Receptors. , 1997, , 151-174.		2
208	The Epicardial Signaling Center in Development and Disease. , 2010, , 345-359.		1
209	An S116R Phosphorylation Site Mutation in Human Fibroblast Growth Factor-1 Differentially Affects Mitogenic and Glucose-Lowering Activities. Journal of Pharmaceutical Sciences, 2016, 105, 3507-3519.	3.3	1
210	An Introduction to the Fibroblast Growth Factors. , 2017, , 1-39.		1
211	FGFs, heparan sulfate and FGFRs: complex interactions essential for development., 2000, 22, 108.		1
212	Chapter 1 Targeted expression of cloned genes in transgenic mice. Progress in Brain Research, 1987, 71, 3-12.	1.4	0
213	Molecular mechanisms underlying ectopic otoconia-like particles in the endolymphatic sac of embryonic mice. Maturitas, 2004, 194, 65-65.	2.4	0
214	Fibroblast growth factor (FGF) and FGF receptor families in bone. , 2020, , 1113-1140.		0
215	\hat{l}^2 -catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1. Journal of Cell Science, 2010, 123, e1-e1.	2.0	0
216	Growth Factor Signaling Pathways in Lung Development and Cancer. FASEB Journal, 2012, 26, 206.4.	0.5	0

#	Article	IF	CITATIONS
217	Endothelial Blood-Bone Marrow-Barrier Dynamically Regulates Balanced Stem and Progenitor Cell Trafficking and Maintenance. Blood, 2012, 120, 507-507.	1.4	O
218	Fate Before Function: Specification of the Hair Follicle Niche Occurs Prior to Its Formation and is Progenitor Dependent. SSRN Electronic Journal, 0, , .	0.4	0