Vincenzo Russo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7943503/publications.pdf

Version: 2024-02-01

64 3,442 29 57
papers citations h-index g-index

75 75 75 4663
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Targeting cholesterol homeostasis in hematopoietic malignancies. Blood, 2022, 139, 165-176.	1.4	17
2	Cholesterol: a putative oncogenic driver for DLBCL. Blood, 2022, 139, 5-6.	1.4	2
3	In search for novel liver X receptors modulators by extending the structure–activity relationships of cholenamide derivatives. Chemistry and Physics of Lipids, 2021, 241, 105151.	3.2	3
4	Therapeutic Regeneration of Lymphatic and Immune Cell Functions upon Lympho-organoid Transplantation. Stem Cell Reports, 2019, 12, 1260-1268.	4.8	20
5	Nuclear receptor ligands induce TREM-1 expression on dendritic cells: analysis of their role in tumors. Oncolmmunology, 2019, 8, 1554967.	4.6	14
6	C24-hydroxylated stigmastane derivatives as Liver X Receptor agonists. Chemistry and Physics of Lipids, 2018, 212, 44-50.	3.2	18
7	Prognostic role of liver X receptorâ€alpha in resected stage II and III nonâ€smallâ€cell lung cancer. Clinical Respiratory Journal, 2018, 12, 241-246.	1.6	12
8	Enzymatic Inactivation of Oxysterols in Breast Tumor Cells Constraints Metastasis Formation by Reprogramming the Metastatic Lung Microenvironment. Frontiers in Immunology, 2018, 9, 2251.	4.8	19
9	Tumor-derived factors affecting immune cells. Cytokine and Growth Factor Reviews, 2017, 36, 79-87.	7.2	25
10	Side-Chain Modified Ergosterol and Stigmasterol Derivatives as Liver X Receptor Agonists. Journal of Medicinal Chemistry, 2017, 60, 6548-6562.	6.4	21
11	Goals and objectives of the Italian Network for Tumor Biotherapy (NIBIT). Cytokine and Growth Factor Reviews, 2017, 36, 1-3.	7.2	1
12	T Cells as Antigen Carriers for Anti-tumor Vaccination. Methods in Molecular Biology, 2016, 1393, 97-104.	0.9	2
13	Detection and Functional Analysis of Tumor-Derived LXR Ligands. Methods in Molecular Biology, 2016, 1393, 53-65.	0.9	1
14	24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6219-E6227.	7.1	36
15	The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunology, Immunotherapy, 2016, 65, 1303-1315.	4.2	32
16	Cholesterol metabolites and tumor microenvironment: the road towards clinical translation. Cancer Immunology, Immunotherapy, 2016, 65, 111-117.	4.2	19
17	New-onset uveitis during CTLA-4 blockade therapy with ipilimumab in metastatic melanoma patient. Canadian Journal of Ophthalmology, 2015, 50, e2-e4.	0.7	34
18	Peptide-based vaccines for cancer therapy. Human Vaccines and Immunotherapeutics, 2014, 10, 3175-3178.	3.3	59

#	Article	IF	CITATIONS
19	Acid sphingomyelinase determines melanoma progression and metastatic behaviour via the microphtalmia-associated transcription factor signalling pathway. Cell Death and Differentiation, 2014, 21, 507-520.	11.2	37
20	A pilot Phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. Oncolmmunology, 2014, 3, e963406.	4.6	23
21	Oxysterols act as promiscuous ligands of class-A GPCRs: In silico molecular modeling and in vitro validation. Cellular Signalling, 2014, 26, 2614-2620.	3.6	46
22	LXRâ€dependent and â€independent effects of oxysterols on immunity and tumor growth. European Journal of Immunology, 2014, 44, 1896-1903.	2.9	63
23	Inhibition of CCR7/CCL19 Axis in Lesional Skin Is a Critical Event for Clinical Remission Induced by TNF Blockade in Patients with Psoriasis. American Journal of Pathology, 2013, 183, 413-421.	3.8	39
24	The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. Journal of Experimental Medicine, 2013, 210, 1711-1728.	8.5	167
25	Oxysterols recruit tumor-supporting neutrophils within the tumor microenvironment. Oncolmmunology, 2013, 2, e26469.	4.6	8
26	Clinical and immunologic responses in melanoma patients vaccinated with MAGEâ€A3â€genetically modified lymphocytes. International Journal of Cancer, 2013, 132, 2557-2566.	5.1	20
27	Comprehensive Genomic Characterization of Cutaneous Malignant Melanoma Cell Lines Derived from Metastatic Lesions by Whole-Exome Sequencing and SNP Array Profiling. PLoS ONE, 2013, 8, e63597.	2.5	32
28	Control of the immune system by oxysterols and cancer development. Current Opinion in Pharmacology, 2012, 12, 729-735.	3.5	30
29	A dual role for genetically modified lymphocytes in cancer immunotherapy. Trends in Molecular Medicine, 2012, 18, 193-200.	6.7	26
30	IRF1 and NF-kB Restore MHC Class I-Restricted Tumor Antigen Processing and Presentation to Cytotoxic T Cells in Aggressive Neuroblastoma. PLoS ONE, 2012, 7, e46928.	2.5	69
31	A Clinical Study of a Cell-Based MAGE-A3 Active Immunotherapy in Advanced Melanoma Patients. Journal of Cancer, 2011, 2, 329-330.	2.5	1
32	Autologous Versus Allogeneic Cell-Based Vaccines?. Cancer Journal (Sudbury, Mass), 2011, 17, 331-336.	2.0	23
33	Metabolism, LXR/LXR ligands, and tumor immune escape. Journal of Leukocyte Biology, 2011, 90, 673-679.	3.3	21
34	Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish. BMC Developmental Biology, 2010, 10, 120.	2.1	32
35	Tumor-mediated liver X receptor- $\hat{l}\pm$ activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nature Medicine, 2010, 16, 98-105.	30.7	275
36	Peripheral blood lymphocytes genetically modified to express the self/tumor antigen MAGE-A3 induce antitumor immune responses in cancer patients. Blood, 2009, 113, 1651-1660.	1.4	46

#	Article	IF	Citations
37	IL-7 and IL-15 allow the generation of suicide gene–modified alloreactive self-renewing central memory human T lymphocytes. Blood, 2009, 113, 1006-1015.	1.4	153
38	The hidden (and lazy) TCR. Blood, 2009, 114, 2855-2856.	1.4	0
39	Identification of novel sense and antisense transcription at the TRPM2 locus in cancer. Cell Research, 2008, 18, 1128-1140.	12.0	102
40	Update on vaccines for melanoma patients. Expert Review of Dermatology, 2008, 3, 195-207.	0.3	0
41	Selected natural and synthetic retinoids impair CCR7- and CXCR4-dependent cell migration in vitro and in vivo. Journal of Leukocyte Biology, 2008, 84, 871-879.	3.3	23
42	Endosomal Proteases Influence the Repertoire of MAGE-A3 Epitopes Recognized In vivo by CD4+ T Cells. Cancer Research, 2008, 68, 1555-1562.	0.9	12
43	Dendritic cell migration and lymphocyte homing imprinting. Histology and Histopathology, 2008, 23, 897-910.	0.7	35
44	Abrogation of Prostaglandin E2/EP4 Signaling Impairs the Development of rag1+ Lymphoid Precursors in the Thymus of Zebrafish Embryos. Journal of Immunology, 2007, 179, 357-364.	0.8	25
45	Universal and Stemness-Related Tumor Antigens: Potential Use in Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 5675-5679.	7.0	32
46	The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood, 2007, 109, 4708-4715.	1.4	200
47	Lymphocytes genetically modified to express tumor antigens target DCs in vivo and induce antitumor immunity. Journal of Clinical Investigation, 2007, 117, 3087-3096.	8.2	33
48	The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood, 2006, 107, 151-158.	1.4	98
49	A new LAGE-1 peptide recognized by cytolytic T lymphocytes on HLA-A68 tumors. Cancer Immunology, Immunotherapy, 2006, 55, 644-652.	4.2	10
50	The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. Journal of Leukocyte Biology, 2006, 80, 87-95.	3.3	122
51	Generation of tumour-specific cytotoxic T-cell clones from histocompatibility leucocyte antigen-identical siblings of patients with melanoma. British Journal of Cancer, 2006, 95, 181-188.	6.4	7
52	Direct Effects of Polymyxin B on Human Dendritic Cells Maturation. Journal of Biological Chemistry, 2005, 280, 14264-14271.	3.4	36
53	Prognostic significance of cancer-testis gene expression in resected non-small cell lung cancer patients. Oncology Reports, 2004, 12, 145.	2.6	12
54	Identification of a MAGE-1 peptide recognized by cytolytic T lymphocytes on HLA-B*5701 tumors. Tissue Antigens, 2004, 63, 453-457.	1.0	8

#	Article	IF	CITATIONS
55	Rhabdomyosarcomas are potential target of MAGE-specific immunotherapies. Cancer Immunology, Immunotherapy, 2004, 53, 519-524.	4.2	11
56	The Production of a New MAGE-3 Peptide Presented to Cytolytic T Lymphocytes by HLA-B40 Requires the Immunoproteasome. Journal of Experimental Medicine, 2002, 195, 391-399.	8.5	107
57	A MAGE-A4 peptide presented by HLA-B37 is recognized on human tumors by cytolytic T lymphocytes. Tissue Antigens, 2002, 60, 365-371.	1.0	19
58	Acquisition of intact allogeneic human leukocyte antigen molecules by human dendritic cells. Blood, 2000, 95, 3473-3477.	1.4	85
59	Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2185-2190.	7.1	136
60	Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by geneMAGE-3 and presented by HLA-A1. International Journal of Cancer, 1999, 80, 219-230.	5.1	667
61	High homogeneity of MAGE, BAGE, GAGE, Tyrosinase and Melan-A/MART-1 gene expression in clusters of multiple simultaneous metastases of human melanoma: Implications for protocol design of therapeutic antigen-specific vaccination strategies., 1998, 77, 200-204.		45
62	MAGE, BAGE and GAGE genes experiences in fresh epithelial ovarian carcinomas., 1996, 67, 457-460.		29
63	Expression of the mage gene family in primary and metastatic human breast cancer: Implications for tumor antigen-specific immunotherapy. International Journal of Cancer, 1995, 64, 216-221.	5.1	69
64	A family of rapidly evolving genes from the sex reversal critical region in Xp21. Mammalian Genome, 1995, 6, 571-580.	2.2	53