Ineke Braakman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7943464/publications.pdf

Version: 2024-02-01

79 papers

6,967 citations

39 h-index 76900 74 g-index

87 all docs

87 docs citations

87 times ranked

8103 citing authors

#	Article	IF	CITATIONS
1	Clinical and molecular characterization of the R751L-CFTR mutation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L288-L300.	2.9	7
2	The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. Journal of Biological Chemistry, 2021, 296, 100598.	3.4	26
3	Co-Translational Folding of the First Transmembrane Domain of ABC-Transporter CFTR is Supported by Assembly with the First Cytosolic Domain. Journal of Molecular Biology, 2021, 433, 166955.	4.2	31
4	Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Reports, 2021, 36, 109646.	6.4	7
5	<scp>The importance of naturally attenuated SARSâ€CoV</scp> â€2 <scp>in the fight against COVID</scp> â€19. Environmental Microbiology, 2020, 22, 1997-2000.	3.8	54
6	Characterization of CNPY5 and its family members. Protein Science, 2019, 28, 1276-1289.	7.6	13
7	Analysis of Protein Folding, Transport, and Degradation in Living Cells by Radioactive Pulse Chase. Journal of Visualized Experiments, 2019, , .	0.3	7
8	Slowing ribosome velocity restores folding and function of mutant CFTR. Journal of Clinical Investigation, 2019, 129, 5236-5253.	8.2	36
9	Folding–function relationship of the most common cystic fibrosis–causing CFTR conductance mutants. Life Science Alliance, 2019, 2, e201800172.	2.8	29
10	Cystic fibrosis research topics featured at the 14th ECFS Basic Science Conference: Chairman's summary. Journal of Cystic Fibrosis, 2018, 17, S1-S4.	0.7	5
11	Correcting CFTR folding defects by small-molecule correctors to cure cystic fibrosis. Current Opinion in Pharmacology, 2017, 34, 83-90.	3.5	54
12	Analysis of Disulfide Bond Formation. Current Protocols in Protein Science, 2017, 90, 14.1.1-14.1.21.	2.8	19
13	Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biology, 2017, 15, e2000779.	5.6	118
14	Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. ELife, 2017, 6, .	6.0	41
15	Protein quality control at the endoplasmic reticulum. Essays in Biochemistry, 2016, 60, 227-235.	4.7	117
16	Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G. Scientific Reports, 2016, 6, 34830.	3.3	26
17	Co―and Postâ€Translational Protein Folding in the <scp>ER</scp> . Traffic, 2016, 17, 615-638.	2.7	110
18	Mutational and functional analysis of N-linked glycosylation of envelope fusion protein F of Helicoverpa armigera nucleopolyhedrovirus. Journal of General Virology, 2016, 97, 988-999.	2.9	9

#	Article	IF	CITATIONS
19	TORC2 mediates the heat stress response in <i>Drosophila</i> by promoting the formation of stress granules. Journal of Cell Science, 2015, 128, 2497-508.	2.0	32
20	Folding of influenza virus hemagglutinin in insect cells is fast and efficient. Journal of Biotechnology, 2015, 203, 77-83.	3.8	1
21	Bypass of Quality Control in Protein Folding Pathways Induces Specific Misfolding of HIV Envelope V2 Loop: Implications for Iminosugars as Antivirals. AIDS Research and Human Retroviruses, 2014, 30, A49-A49.	1.1	0
22	Deletion of the Highly Conserved N-Glycan at Asn260 of HIV-1 gp120 Affects Folding and Lysosomal Degradation of gp120, and Results in Loss of Viral Infectivity. PLoS ONE, 2014, 9, e101181.	2.5	26
23	Protein Folding in the Endoplasmic Reticulum. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013201-a013201.	5.5	392
24	ERdj5 Is the ER Reductase that Catalyzes the Removal of Non-Native Disulfides and Correct Folding of the LDL Receptor. Molecular Cell, 2013, 50, 793-804.	9.7	116
25	Peroxisome Formation and Maintenance Are Dependent on the Endoplasmic Reticulum. Annual Review of Biochemistry, 2013, 82, 723-744.	11.1	87
26	Ero1–PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110403.	4.0	59
27	A Sweet Send-Off. Science, 2013, 340, 930-931.	12.6	4
28	Quantifying Changes in the Cellular Thiol-Disulfide Status during Differentiation of B Cells into Antibody-Secreting Plasma Cells. International Journal of Cell Biology, 2013, 2013, 1-9.	2.5	6
29	Two phases of disulfide bond formation have differing requirements for oxygen. Journal of Cell Biology, 2013, 203, 615-627.	5.2	113
30	Biochemically Distinct Vesicles from the Endoplasmic Reticulum Fuse to Form Peroxisomes. Cell, 2012, 149, 397-409.	28.9	183
31	Protein Folding and Modification in the Mammalian Endoplasmic Reticulum. Annual Review of Biochemistry, 2011, 80, 71-99.	11.1	563
32	Regulated increase in folding capacity prevents unfolded protein stress in the ER. Journal of Cell Science, 2010, 123, 787-794.	2.0	34
33	Peroxisomal Membrane Proteins Insert into the Endoplasmic Reticulum. Molecular Biology of the Cell, 2010, 21, 2057-2065.	2.1	154
34	Calcium as a Crucial Cofactor for Low Density Lipoprotein Receptor Folding in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 8656-8664.	3.4	28
35	The Primary Folding Defect and Rescue of ΔF508 CFTR Emerge during Translation of the Mutant Domain. PLoS ONE, 2010, 5, e15458.	2.5	76
36	Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17019-17024.	7.1	74

#	Article	IF	CITATIONS
37	Optimization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins with V1/V2 Deleted, Using Virus Evolution. Journal of Virology, 2009, 83, 368-383.	3.4	43
38	Entering a new era with Ero. Nature Reviews Molecular Cell Biology, 2009, 10, 503-503.	37.0	2
39	Protein folding includes oligomerization – examples from the endoplasmic reticulum and cytosol. FEBS Journal, 2008, 275, 4700-4727.	4.7	51
40	Peroxisomes: minted by the ER. Current Opinion in Cell Biology, 2008, 20, 393-400.	5 . 4	54
41	The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion. Retrovirology, 2008, 5, 10.	2.0	42
42	Only Five of 10 Strictly Conserved Disulfide Bonds Are Essential for Folding and Eight for Function of the HIV-1 Envelope Glycoprotein. Molecular Biology of the Cell, 2008, 19, 4298-4309.	2.1	44
43	Evolution Rescues Folding of Human Immunodeficiency Virus-1 Envelope Glycoprotein GP120 Lacking a Conserved Disulfide Bond. Molecular Biology of the Cell, 2008, 19, 4707-4716.	2.1	12
44	Cargo Load Reduction. Science, 2008, 321, 499-500.	12.6	4
45	A Common Polymorphism Renders the Luteinizing Hormone Receptor Protein More Active by Improving Signal Peptide Function and Predicts Adverse Outcome in Breast Cancer Patients. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1470-1476.	3.6	54
46	The return of the peroxisome. Journal of Cell Science, 2006, 119, 989-994.	2.0	31
47	A critical step in the folding of influenza virus HA determined with a novel folding assay. Nature Structural and Molecular Biology, 2005, 12, 258-263.	8.2	13
48	Chaperone proteins and peroxisomal protein import. Topics in Current Genetics, 2005, , 149-183.	0.7	1
49	Expression Clustering Reveals Detailed Co-expression Patterns of Functionally Related Proteins during B Cell Differentiation. Molecular and Cellular Proteomics, 2005, 4, 1297-1310.	3.8	78
50	Endoplasmic Reticulum Stress and the Making of a Professional Secretory Cell. Critical Reviews in Biochemistry and Molecular Biology, 2005, 40, 269-283.	5. 2	60
51	Versatility of the Endoplasmic Reticulum Protein Folding Factory. Critical Reviews in Biochemistry and Molecular Biology, 2005, 40, 191-228.	5. 2	173
52	Folding of CFTR Is Predominantly Cotranslational. Molecular Cell, 2005, 20, 277-287.	9.7	155
53	Contribution of the Endoplasmic Reticulum to Peroxisome Formation. Cell, 2005, 122, 85-95.	28.9	416
54	Protein folding and quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 2004, 16, 343-349.	5 . 4	393

#	Article	IF	CITATIONS
55	Peroxisomes Start Their Life in the Endoplasmic Reticulum. Traffic, 2003, 4, 512-518.	2.7	89
56	Quality control in the endoplasmic reticulum protein factory. Nature, 2003, 426, 891-894.	27.8	625
57	Oxidation of ER Resident Proteins Upon Oxidative Stress: Effects of Altering Cellular Redox/Antioxidant Status and Implications for Protein Maturation. Antioxidants and Redox Signaling, 2003, 5, 381-387.	5.4	85
58	Sequential Waves of Functionally Related Proteins Are Expressed When B Cells Prepare for Antibody Secretion. Immunity, 2003, 18, 243-253.	14.3	341
59	Pulse-Chase Labeling Techniques for the Analysis of Protein Maturation and Degradation. , 2003, 232, 133-146.		16
60	Folding of HIVâ€1 Envelope glycoprotein involves extensive isomerization of disulfide bonds and conformationâ€dependent leader peptide cleavage. FASEB Journal, 2003, 17, 1058-1067.	0.5	98
61	Coordinated Nonvectorial Folding in a Newly Synthesized Multidomain Protein. Science, 2002, 298, 2401-2403.	12.6	155
62	Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie, 2001, 83, 783-790.	2.6	80
63	A novel lectin in the secretory pathway. EMBO Reports, 2001, 2, 666-668.	4.5	26
64	Folding of Viral Envelope Glycoproteins in the Endoplasmic Reticulum. Traffic, 2000, 1, 533-539.	2.7	77
65	Transactions at the Peroxisomal Membrane. , 2000, 34, 303-322.		1
66	HIV-1 Evolves into a Nonsyncytium-Inducing Virus upon Prolonged Culture in Vitro. Virology, 1999, 263, 55-69.	2.4	20
67	Peroxisomes: simple in function but complex in maintenance. Trends in Cell Biology, 1999, 9, 447-453.	7.9	72
68	The Cytosolic DnaJ-like Protein Djp1p Is Involved Specifically in Peroxisomal Protein Import. Journal of Cell Biology, 1998, 142, 421-434.	5.2	86
69	Expression of the Receptor Tyrosine Kinase Ret on the Plasma Membrane Is Dependent on Calcium. Journal of Biological Chemistry, 1998, 273, 12077-12081.	3.4	31
70	Quality Control in the Secretory Pathway: The Role of Calreticulin, Calnexin and BiP in the Retention of Glycoproteins with C-Terminal Truncations. Molecular Biology of the Cell, 1997, 8, 1943-1954.	2.1	187
71	Analysis of Disulfide Bond Formation. Current Protocols in Protein Science, 1996, 3, Unit14.1.	2.8	5
72	Protein Folding in the Endoplasmic Reticulum. , 1993, , 125-136.		4

#	Article	IF	CITATIONS
73	Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature, 1992, 356, 260-262.	27.8	303
74	Protein folding and assembly in the endoplasmic reticulum. Fresenius' Journal of Analytical Chemistry, 1992, 343, 10-11.	1.5	0
75	The endoplasmic reticulum as a protein-folding compartment. Trends in Cell Biology, 1992, 2, 227-231.	7.9	306
76	Separation of periportal and perivenous rat hepatocytes by fluorescence-activated cell sorting: Confirmation with colloidal gold as an exogenous marker. Hepatology, 1991, 13, 73-82.	7.3	15
77	Heterogeneous acinar localization of the asialoglycoprotein internalization system in rat hepatocytes. Hepatology, 1988, 8, 1521-1529.	7.3	26
78	Acinar redistribution and heterogeneity in transport of the organic cation rhodamine B in rat liver. Hepatology, 1987, 7, 849-855.	7. 3	26
79	Quality control in the ER of differentiating B cells. , 0, 2007, .		0