Fanghong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7942924/publications.pdf

Version: 2024-02-01

1307594 1125743 29 211 7 13 citations g-index h-index papers 29 29 29 127 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabrication and grinding performance of CVD diamond abrasive tool. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2023, 237, 192-202.	2.4	3
2	Erosion mechanism and cutting performance of MPCVD multilayer diamond thick film-Si3N4 brazed inserts. International Journal of Advanced Manufacturing Technology, 2022, 118, 2437-2451.	3.0	2
3	CVD diamond coated drawing dies: a review. Materials and Manufacturing Processes, 2021, 36, 381-408.	4.7	7
4	Grinding characteristics of CVD diamond grits in single grit grinding of SiC ceramics. International Journal of Advanced Manufacturing Technology, 2021, 114, 2783-2797.	3.0	5
5	Selective Control of Oxidation Resistance of Diamond by Dopings. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42302-42313.	8.0	6
6	Corrosion Behavior of Plasma Transferred Arc Fe-based Coating Reinforced by Spherical Tungsten Carbide in Hydrochloric Acid Solutions. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 299-309.	1.0	7
7	HFCVD Synthesis of Boron-Doped Microcrystalline Diamonds. Journal of Superhard Materials, 2019, 41, 143-148.	1.2	4
8	Tribological properties of TiN/diamond and TiAlN/diamond bilayer films sliding against carbon steel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 1014-1024.	1.8	2
9	THE EFFECTS OF BORON DOPING ON RESIDUAL STRESS OF HFCVD DIAMOND FILM FOR MEMS APPLICATIONS. Surface Review and Letters, 2018, 25, 1850039.	1.1	4
10	High-Speed Drawing of Al Alloy Wire by Diamond-Coated Drawing Die Under Environmentally Friendly Water-Based Emulsion Lubrication. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	2.2	6
11	Sandblasting pretreatment for deposition of diamond films on WC-Co hard metal substrates. Diamond and Related Materials, 2017, 73, 7-14.	3.9	54
12	THE ABRASION RESISTANCE AND ADHESION OF HFCVD BORON AND SILICON-DOPED DIAMOND FILMS ON WC–Co DRAWING DIES. Surface Review and Letters, 2017, 24, 1750090.	1.1	4
13	Simulation of temperature distribution in hot filament chemical vapor deposition diamond films growth on SiC seals. Journal of Shanghai Jiaotong University (Science), 2016, 21, 541-547.	0.9	5
14	FRICTION PROPERTIES OF POLISHED CVD DIAMOND FILMS SLIDING AGAINST DIFFERENT METALS. Surface Review and Letters, 2016, 23, 1550096.	1.1	5
15	Tribological Properties of MCD Films Synthesized Using Different Carbon Sources When Sliding Against Stainless Steel. Tribology Letters, 2016, 61, 1.	2.6	10
16	Tribological behaviors of diamond films and their applications in metal drawing production in water-lubricating condition. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 656-666.	1.8	6
17	Effect of pressure on the growth of boron and nitrogen doped HFCVD diamond films on WC–Co substrate. Surface and Interface Analysis, 2015, 47, 572-586.	1.8	13
18	Numerical and experimental investigation of trapezoidal wire cold drawing through a series of shaped dies. International Journal of Advanced Manufacturing Technology, 2015, 76, 1383-1391.	3.0	10

#	Article	IF	CITATIONS
19	SIMULATION-BASED OPTIMAL DESIGN OF HFCVD EQUIPMENT ADOPTED FOR MASS PRODUCTION OF DIAMOND FILMS ON INNER-HOLE SURFACES. Surface Review and Letters, 2014, 21, 1450066.	1.1	4
20	THE EFFECT OF THE DOUBLE-DECK FILAMENT SETUP ON ENHANCING THE UNIFORMITY OF TEMPERATURE FIELD ON LONG-FLUTE CUTTING TOOLS. Surface Review and Letters, 2014, 21, 1450078.	1.1	4
21	THE EFFECT OF THE GAS INLET ON THE FLUID FIELD DURING FABRICATING HFCVD DIAMOND-COATED CUTTING TOOLS. Surface Review and Letters, 2014, 21, 1450068.	1.1	O
22	THE EFFECT OF THE GAS OUTLET ON THE GAS VELOCITY FIELD IN MASS-PRODUCTION OF HFCVD DIAMOND-COATED DRILLS. Surface Review and Letters, 2014, 21, 1450051.	1.1	0
23	EFFECT OF POLISHING ON THE FRICTION BEHAVIORS AND CUTTING PERFORMANCE OF BORON-DOPED DIAMOND FILMS ON WC- Co INSERTS. Surface Review and Letters, 2014, 21, 1450037.	1.1	3
24	Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining. Materials, 2013, 6, 3128-3138.	2.9	21
25	SIMULATION AND EXPERIMENTAL STUDIES ON SUBSTRATE TEMPERATURE AND GAS DENSITY FIELD IN HFCVD DIAMOND FILMS GROWTH ON WC–Co DRILL TOOLS. Surface Review and Letters, 2013, 20, 1350020.	1.1	11
26	EFFECT OF SILICON DOPING IN CVD DIAMOND FILMS FROM MICROCRYSTALLINE TO NANOCRYSTALLINE ON WC-Co SUBSTRATES. Surface Review and Letters, 2013, 20, 1350055.	1.1	3
27	SIMULATION OPTIMIZATION OF THE HEAT TRANSFER CONDITIONS IN HFCVD DIAMOND FILM GROWTH INSIDE HOLES. Surface Review and Letters, 2013, 20, 1350031.	1.1	7
28	Wear behavior of diamond-coated drawing dies. Transactions of Tianjin University, 2011, 17, 259-263.	6.4	3
29	Atomic-Level investigation of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mtext>CH</mml:mtext><mml:mi>x<mml:msub><mml:mtext>C</mml:mtext><mml:mtext>2< on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\f2</mml:mi></mml:math>-SiC</mml:mtext></mml:msub></mml:mi></mml:msub>	าml:mi> <br /ໝ.ml:mte	mml:msub> xt2

3