Galina A Tsirlina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7941053/publications.pdf Version: 2024-02-01

		218677	265206
102	2,188	26	42
papers	citations	h-index	g-index
111	111	111	2334
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science. Electrochimica Acta, 1994, 39, 1739-1747.	5.2	106
2	The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions. Corrosion Science, 2014, 80, 299-308.	6.6	106
3	Electrodeposited platinum revisited: Tuning nanostructure via the deposition potential. Electrochimica Acta, 2006, 51, 4477-4488.	5.2	103
4	Rationalizing the Influence of the Mn(IV)/Mn(III) Red-Ox Transition on the Electrocatalytic Activity of Manganese Oxides in the Oxygen Reduction Reaction. Electrochimica Acta, 2016, 187, 161-172.	5.2	97
5	On the influence of the metal loading on the structure of carbon-supported PtRu catalysts and their electrocatalytic activities in CO and methanol electrooxidation. Physical Chemistry Chemical Physics, 2007, 9, 5476.	2.8	87
6	Life of the Tafel equation: Current understanding and prospects for the second century. Electrochimica Acta, 2007, 52, 3493-3504.	5.2	85
7	Electrocatalytic Oxygen Reduction Reaction on Perovskite Oxides: Series versus Direct Pathway. ChemPhysChem, 2014, 15, 2108-2120.	2.1	77
8	Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochimica Acta, 2011, 56, 2378-2384.	5.2	63
9	Quantum chemical modelling of the heterogeneous electron transfer: from qualitative analysis to a polarization curve. Electrochimica Acta, 2000, 45, 3521-3536.	5.2	55
10	Size effects in electrochemistry. Russian Chemical Reviews, 2001, 70, 285-298.	6.5	53
11	Carbon materials as additives to the OER catalysts: RRDE study of carbon corrosion at high anodic potentials. Electrochimica Acta, 2019, 321, 134657.	5.2	53
12	Network electrocatalytic films of conducting polymer-linked polyoxometallate-stabilized platinum nanoparticles. Electrochimica Acta, 2005, 50, 5155-5162.	5.2	49
13	Ferrocene/Ferrocenium Redox Couple at Au(111)/Ionic Liquid and Au(111)/Acetonitrile Interfaces: A Molecular-Level View at the Elementary Act. Journal of Physical Chemistry C, 2014, 118, 6151-6164.	3.1	49
14	Quinones Electrochemistry in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 668-677.	2.6	48
15	The role of charge distribution in the reactant and product in double layer effects for simple heterogeneous redox reactions. Journal of Electroanalytical Chemistry, 2001, 498, 93-104.	3.8	42
16	Activation Energy of Electron Transfer between a Metal Electrode and Reagents of Nonspherical Form and Complicated Charge Distribution. Cr(EDTA) Complexes. Journal of Physical Chemistry B, 1998, 102, 677-686.	2.6	40
17	Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2017, 246, 643-653.	5.2	40
18	Study of Hydrogen Peroxide Reactions on Manganese Oxides as a Tool To Decode the Oxygen Reduction Reaction Mechanism. ChemElectroChem, 2016, 3, 1667-1677.	3.4	39

#	Article	IF	CITATIONS
19	Controlled growth of metallic inverse opals by electrodeposition. Physical Chemistry Chemical Physics, 2010, 12, 15414.	2.8	38
20	Size effects on the electrochemical oxidation of oxalic acid on nanocrystalline platinum. Journal of Electroanalytical Chemistry, 2000, 480, 112-119.	3.8	35
21	Reticulated vitreous carbon–polyaniline–palladium composite electrodes. Electrochimica Acta, 2005, 50, 1885-1893.	5.2	35
22	Electrochemical characterisation of Pd modified ceramicâ^£carbon electrodes: partially flooded versus wetted channel hydrophobic gas electrodes. Journal of Electroanalytical Chemistry, 1999, 466, 45-59.	3.8	34
23	Contemporary understanding of the peroxodisulfate reduction at a mercury electrode. Journal of Electroanalytical Chemistry, 2003, 552, 261-278.	3.8	33
24	A spectroscopic and computational study of Al(III) complexes in sodium cryolite melts: Ionic composition in a wide range of cryolite ratios. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1244-1252.	3.9	31
25	Frumkin Correction: Microscopic View. Russian Journal of Electrochemistry, 2002, 38, 132-140.	0.9	28
26	Formation of Rechargeable Films on Platinum in Sulfuric Acid Solutions of Isopolytungstates. Russian Journal of Electrochemistry, 2003, 39, 716-726.	0.9	28
27	Molecular Description of the Persulfate Ion Reduction on a Mercury Electrode. Russian Journal of Electrochemistry, 2002, 38, 720-731.	0.9	26
28	Rotating ring-disk electrode as a quantitative tool for the investigation of the oxygen evolution reaction. Electrochimica Acta, 2018, 286, 304-312.	5.2	25
29	A spectroscopic and computational study of Al(III) complexes in cryolite melts: Effect of cation nature. Chemical Physics, 2013, 412, 22-29.	1.9	24
30	Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching. Electrochimica Acta, 2017, 226, 60-68.	5.2	24
31	Nature of the â€ [~] current pit' in concentrated solutions. Journal of Electroanalytical Chemistry, 2000, 491, 126-138.	3.8	23
32	Raman spectroscopic evidence of the bronze-like recharging behavior for conducting films deposited from isopolytungstates. Electrochimica Acta, 2005, 50, 1693-1702.	5.2	23
33	Potentiostatic electrodeposition of Pt on GC and on HOPG at low loadings: Analysis of the deposition transients and the structure of Pt deposits. Electrochimica Acta, 2014, 150, 279-289.	5.2	23
34	Platinization assisted by Keggin-type heteropolytungstates. Electrochimica Acta, 2003, 48, 3797-3804.	5.2	22
35	Exploring the molecular features of cationic catalysis phenomenon: Peroxodisulfate reduction at a mercury electrode. Journal of Electroanalytical Chemistry, 2005, 582, 118-129.	3.8	21
36	Structural and electrocatalytic features of Pt/C catalysts fabricated in supercritical carbon dioxide. Journal of Solid State Electrochemistry, 2011, 15, 623-633.	2.5	21

#	Article	IF	CITATIONS
37	Mn2O3 oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media: Highly active if properly manipulated. Electrochimica Acta, 2021, 367, 137378.	5.2	21
38	Why does the hydrolysis of In(III) aquacomplexes make them electrochemically more active?. Electrochimica Acta, 2005, 50, 4888-4896.	5.2	20
39	Long Distance Electron Transfer at the Metal/Alkanethiol/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 15970-15977.	3.1	18
40	ORR on Simple Manganese Oxides: Molecular-Level Factors Determining Reaction Mechanisms and Electrocatalytic Activity. Journal of the Electrochemical Society, 2018, 165, J3199-J3208.	2.9	18
41	Mutual indirect probing of platinized platinum/tungstate nanostructural features. Journal of Solid State Electrochemistry, 2004, 8, 778-785.	2.5	16
42	Inhomogeneous films of conducting polymers—STM and electrochemical characterisation. Electrochimica Acta, 2001, 46, 4043-4050.	5.2	15
43	Self-inhibition phenomena in the electroreduction of hexamolybdocobaltate(III): A combined experimental and computational study. Chemical Physics, 2005, 319, 200-209.	1.9	15
44	Dynamic Solvent Effects in Electrochemical Kinetics: Indications for a Switch of the Relevant Solvent Mode. Journal of Physical Chemistry B, 2010, 114, 311-320.	2.6	15
45	Isotope effects in α-PdH(D) as an instrument for diagnosing bulk defects. Journal of Solid State Electrochemistry, 2001, 5, 212-220.	2.5	14
46	Activationless Reduction of the Hexacyanoferrate Anion on a Mercury Electrode. Russian Journal of Electrochemistry, 2003, 39, 97-108.	0.9	14
47	Adlayers of Keggin Type Polytungstate Anions on Platinum:Â Negligible Electrochemical Signatures and Manifestations of "Molecular UPD― Journal of Physical Chemistry B, 2004, 108, 17096-17105.	2.6	14
48	Role of Charge Distribution in the Reactant and Product in Double Layer Effects:Â Construction of Corrected Tafel Plots. Journal of Physical Chemistry A, 2005, 109, 1348-1356.	2.5	13
49	Electropolymerization of pyrrole in acetonitrile as affected by the nature of substitute and deposition potential. Journal of Solid State Electrochemistry, 2010, 14, 2039-2048.	2.5	13
50	Electrodeposited oxotungstate films: Towards the molecular nature of recharging processes. Electrochimica Acta, 2011, 56, 3530-3536.	5.2	13
51	The role of supporting electrolyte in heterogeneous electron transfer. Journal of Solid State Electrochemistry, 2017, 21, 1833-1845.	2.5	13
52	Comparison of equilibrium electrochemical behavior of PdHx and LixMn2O4 intercalation electrodes in terms of sorption isotherms. Electrochimica Acta, 2001, 46, 4141-4149.	5.2	12
53	Inorganic barrier layers: electron transfer on mercury modified by tungstate. Mendeleev Communications, 2002, 12, 126-127.	1.6	12
54	Excited State Behaviors of the Dodecamolybdocerate (IV) Anion: (NH4)6H2(CeMo12O42)·9H2O. Journal of Physical Chemistry B, 2006, 110, 15633-15639.	2.6	10

#	Article	IF	CITATIONS
55	Misleading aspects of the viscosity effect on the heterogeneous electron transfer reactions. Chemical Physics, 2006, 326, 123-137.	1.9	10
56	Degradation of High Temperature Polymer Electrolyte Fuel Cell Cathode Material as Affected by Polybenzimidazole. Journal of the Electrochemical Society, 2015, 162, F587-F595.	2.9	10
57	Bismuth nanowires: electrochemical fabrication, structural features, and transport properties. Physical Chemistry Chemical Physics, 2020, 22, 14953-14964.	2.8	10
58	Hard-to-detect Colll/Coll reduction in a hexacyanocobaltate. Mendeleev Communications, 2004, 14, 113-115.	1.6	9
59	Corrected Marcus plots. Journal of Solid State Electrochemistry, 2006, 10, 157-167.	2.5	9
60	Medium and Interfacial Effects in the Multistep Reduction of Binuclear Complexes with Robson-Type Ligand. Inorganic Chemistry, 2008, 47, 6659-6673.	4.0	9
61	Subsequent redox transitions as a tool to understand solvation in ionic liquids. Electrochimica Acta, 2013, 103, 243-251.	5.2	9
62	Electrodeposited non-stoichiometric tungstic acid for electrochromic applications: film growth modes, crystal structure, redox behavior and stability. Applied Surface Science, 2016, 388, 786-793.	6.1	9
63	Conductive additives for oxide-based OER catalysts: A comparative RRDE study of carbon and silver in alkaline medium. Electrochimica Acta, 2019, 319, 227-236.	5.2	9
64	Title is missing!. Russian Journal of Electrochemistry, 2001, 37, 15-25.	0.9	8
65	Toward the Reactivity Prediction: Outersphere Electroreduction of Transition-Metal Ammine Complexes. Journal of Physical Chemistry C, 2009, 113, 2881-2890.	3.1	8
66	Co-adsorbtion of Cu and Keggin type polytungstates on polycrystalline Pt: interplay of atomic and molecular UPD. Faraday Discussions, 2008, 140, 245-267.	3.2	7
67	Ionic association of Ce(IV)-decatungstate in the context of heteroatom reduction. Electrochimica Acta, 2010, 55, 6064-6072.	5.2	7
68	Carbon nanotube cloth for electrochemical charge storage in aqueous media. Journal of Electroanalytical Chemistry, 2018, 827, 58-63.	3.8	7
69	Aqueous electrochemistry of binuclear copper complex with Robson-type ligand: dissolved versus surface-immobilized reactant. Journal of Solid State Electrochemistry, 2005, 9, 581-589.	2.5	6
70	Electrochemistry and catalytic behavior of immobilized binuclear complexes of copper(II) and nickel(II) with Robson type ligand. Journal of Solid State Electrochemistry, 2007, 11, 981-992.	2.5	6
71	Interplay between Solvent Effects of Different Nature in Interfacial Bond Breaking Electron Transfer. Journal of Physical Chemistry B, 2009, 113, 10277-10284.	2.6	6
72	How to combine electrochromic and electrocatalytic applications with the low degradation rate of electrodeposited tungsten oxides. Electrochimica Acta, 2013, 99, 102-107.	5.2	6

#	Article	IF	CITATIONS
73	Carbon nanotube cloth as a promising electrode material for flexible aqueous supercapacitors. Journal of Applied Electrochemistry, 2022, 52, 487-498.	2.9	6
74	Electroreduction of peroxodisulfate on mercury in mixed water–carbohydrate media: The interplay of solvent effects and concentration-dependent structure of reaction layer. Chemical Physics, 2008, 352, 345-352.	1.9	5
75	Pd electrodeposited from membrane-separated thin layer cell. Journal of Solid State Electrochemistry, 2008, 12, 1085-1091.	2.5	5
76	Isopolytungstate Adsorption on Platinum: Manifestations of Underpotential Deposition. Electrocatalysis, 2012, 3, 230-237.	3.0	5
77	Solvent effect on electron transfer through alkanethiols. Journal of Electroanalytical Chemistry, 2018, 819, 58-64.	3.8	5
78	Evolution of electrochemical education. Journal of Solid State Electrochemistry, 2020, 24, 2679-2684.	2.5	5
79	Binuclear Robson type Ni(ii) complex as a reactant supplementing our knowledge of the orientation effects in electrochemical kinetics. Physical Chemistry Chemical Physics, 2008, 10, 2390.	2.8	4
80	V. S. Bagotsky's contribution to modern electrochemistry. Journal of Solid State Electrochemistry, 2014, 18, 1147-1169.	2.5	4
81	Effect of supporting electrolytes on the positions of outer-sphere charge-transfer bands in electronic absorption spectra. Mendeleev Communications, 2001, 11, 88-89.	1.6	3
82	Macrocyclic binuclear copper(II) and nickel(II) complexes: the key role of central ions in hydrogen peroxide electrocatalysis. Mendeleev Communications, 2005, 15, 93-95.	1.6	3
83	Nitrate electroreduction on Pt in metatungstate-containing solution. Mendeleev Communications, 2018, 28, 254-256.	1.6	3
84	(Invited) Fabrication and Operation under the Same Conditions: Oxygen Reduction on Electrodeposited Manganese Oxide. ECS Transactions, 2018, 85, 137-145.	0.5	3
85	Cathodic deposition of birnessite from alkaline permanganate solutions: Tools to control the current efficiency, morphology and adhesion. Journal of Electroanalytical Chemistry, 2020, 874, 114521.	3.8	3
86	Against "electrochemical mainstreams― Journal of Solid State Electrochemistry, 2020, 24, 2187-2188.	2.5	3
87	Interfacial recharging behavior of mixed Co, Mn-based perovskite oxides. Electrochimica Acta, 2021, 398, 139257.	5.2	3
88	Outer-sphere anion–anion charge transfer in a solid hexacyanoferrate. Mendeleev Communications, 2000, 10, 86-87.	1.6	2
89	Outer-sphere electron transfer in aqueous solutions of lithium hexacyanoferrates. Russian Chemical Bulletin, 2003, 52, 2393-2396.	1.5	2
90	2 Surface Thermodynamics of Metal/Solution Interface: the Untapped Resources. Modern Aspects of Electrochemistry, 2011, , 107-158.	0.2	2

#	Article	IF	CITATIONS
91	Half-wave potential as affected by supporting electrolyte nature: Interplay of adsorption and ionic association for electroreduction of V(V)-mixed addenda Keggin tungstophosphate. Electrochimica Acta, 2013, 111, 292-298.	5.2	2
92	Isopolymolybdate adsorption as related to inhibition and self-inhibition of electrode processes. Journal of Electroanalytical Chemistry, 2015, 756, 131-139.	3.8	2
93	Cathodic deposition of manganese oxide for fabrication of hybrid recharging materials based on flexible CNT cloth. Electrochimica Acta, 2022, 412, 140131.	5.2	2
94	Oleg Petrii, a true artist in electrochemistry. Journal of Solid State Electrochemistry, 2008, 12, 329-345.	2.5	1
95	Electrochemistry of MoO3–K2MoO4 melts: a chance to control the nature of reduced molybdenum oxides. Journal of Solid State Electrochemistry, 2012, 16, 3515-3528.	2.5	1
96	Contributions of A.N. Frumkin and the Frumkin School to power sources research. Journal of Solid State Electrochemistry, 2021, 25, 373-385.	2.5	1
97	Tribute to Boris Borisovich Damaskin. Journal of Electroanalytical Chemistry, 2003, 552, 1-17.	3.8	0
98	Reliable rate constant determination for heterogeneous electron transfer: CrEDTA–. Mendeleev Communications, 2009, 19, 314-316.	1.6	0
99	Liquid Junction Potentials. , 2013, , 33-48.		0
100	Traditional and Novel Platinum/Conducting Oxide Electrocatalysts: Trends and Promise. ECS Meeting Abstracts, 2013, , .	0.0	0
101	Specific Molecular Features of Potassium-Containing Cryolite Melts. , 2012, , 787-791.		0
102	Inhibition and self-inhibition phenomena in mixed solutions of Anderson type polyoxometalates. Journal of Electroanalytical Chemistry, 2022, 905, 115952.	3.8	0