Jean-Ehrland Ricci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7940304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers, 2022, 14, 2392.	3.7	7
2	Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules, 2022, 12, 901.	4.0	2
3	Pharmacological preconditioning protects from ischemia/reperfusionâ€induced apoptosis by modulating Bclâ€xL expression through a ROSâ€dependent mechanism. FEBS Journal, 2021, 288, 3547-3569.	4.7	8
4	The prohibitin-binding compound fluorizoline inhibits mitophagy in cancer cells. Oncogenesis, 2021, 10, 64.	4.9	11
5	EVTâ€701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent antiâ€ŧumor activity in models of solid cancers. Pharmacology Research and Perspectives, 2021, 9, e00854.	2.4	7
6	Physiological impact of inÂvivo stable isotope tracing on cancer metabolism. Molecular Metabolism, 2021, 53, 101294.	6.5	9
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C	verlock 10 9.1) Tf 50 502 T 1,430
8	Meeting report of the 4th biennial Metabolism and Cancer symposium. FEBS Journal, 2021, , .	4.7	0
9	New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis, 2020, 9, 73.	4.9	14
10	The E3 ligase UBR2 regulates cell death under caspase deficiency via Erk/MAPK pathway. Cell Death and Disease, 2020, 11, 1041.	6.3	6
11	Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9932-9941.	7.1	64
12	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	16.8	34
13	Caspase 1/11 Deficiency or Pharmacological Inhibition Mitigates Psoriasis-Like Phenotype inÂMice. Journal of Investigative Dermatology, 2019, 139, 1306-1317.	0.7	16
14	Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse. Acta Neuropathologica, 2019, 138, 123-145.	7.7	61
15	GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors. Cell Metabolism, 2019, 29, 1243-1257.e10.	16.2	56
16	Regulation of tumor–stroma interactions by the unfolded protein response. FEBS Journal, 2019, 286, 279-296.	4.7	33
17	The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim. Oncogene, 2018, 37, 2122-2136.	5.9	8
18	Low-Protein Diet Induces IRE1α-Dependent Anticancer Immunosurveillance. Cell Metabolism, 2018, 27, 828-842.e7.	16.2	99

2

#	Article	IF	CITATIONS
19	Metabolic Reprogramming of Non-Hodgkin's B-Cell Lymphomas and Potential Therapeutic Strategies. Frontiers in Oncology, 2018, 8, 556.	2.8	67
20	Reshaping the Immune Tumor Microenvironment Through IRE1 Signaling. Trends in Molecular Medicine, 2018, 24, 607-614.	6.7	22
21	No Parkin Zone: Mitophagy without Parkin. Trends in Cell Biology, 2018, 28, 882-895.	7.9	165
22	Loss of MICOS complex integrity and mitochondrial damage, but not TDP-43 mitochondrial localisation, are likely associated with severity of CHCHD10-related diseases. Neurobiology of Disease, 2018, 119, 159-171.	4.4	48
23	Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. Cell Reports, 2017, 20, 2846-2859.	6.4	217
24	Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspaseÂdeficiency. Nature Cell Biology, 2017, 19, 1116-1129.	10.3	181
25	Sirtuin 7: a new marker of aggressiveness in prostate cancer. Oncotarget, 2017, 8, 77309-77316.	1.8	24
26	<i> <scp>CHCHD</scp> 10 </i> mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Molecular Medicine, 2016, 8, 58-72.	6.9	143
27	How does metabolism affect cell death in cancer?. FEBS Journal, 2016, 283, 2653-2660.	4.7	29
28	Inactivation of Pif1 helicase causes a mitochondrial myopathy in mice. Mitochondrion, 2016, 30, 126-137.	3.4	34
29	Hyperthermic intra-peritoneal chemotherapy and anticancer immune response. Oncolmmunology, 2016, 5, e1060392.	4.6	7
30	Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene, 2016, 35, 261-268.	5.9	54
31	Low carbohydrate diet prevents Mcl-1-mediated resistance to BH3-mimetics. Oncotarget, 2016, 7, 73270-73279.	1.8	1
32	Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death. Oncotarget, 2016, 7, 26120-26136.	1.8	14
33	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
34	NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis. Cell Death and Differentiation, 2015, 22, 2020-2033.	11.2	37
35	GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-κB-dependent induction of HIF-1α. Leukemia, 2015, 29, 1163-1176.	7.2	55
36	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686

#	Article	IF	CITATIONS
37	Glucose metabolism is inhibited by caspases upon the induction of apoptosis. Cell Death and Disease, 2014, 5, e1406-e1406.	6.3	36
38	Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends in Molecular Medicine, 2014, 20, 419-427.	6.7	99
39	Heat-shock Response Increases Lung Injury Caused by <i>Pseudomonas aeruginosa via</i> an Interleukin-10-dependent Mechanism in Mice. Anesthesiology, 2014, 120, 1450-1462.	2.5	13
40	TNFα-induced lysosomal membrane permeability (LMP) is downstream of MOMP and triggered by caspase-mediated p75 cleavage and ROS formation. Journal of Cell Science, 2013, 126, 4015-25.	2.0	36
41	Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. European Journal of Human Genetics, 2013, 21, 528-534.	2.8	107
42	Tumor hypoxia and metabolism – Towards novel anticancer approaches. Annales D'Endocrinologie, 2013, 74, 111-114.	1.4	26
43	GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death and Differentiation, 2013, 20, 1043-1054.	11.2	50
44	Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice. Blood, 2013, 122, 2402-2411.	1.4	45
45	Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis. Leukemia, 2012, 26, 1145-1147.	7.2	39
46	Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20071-20076.	7.1	87
47	The human MSH5 (MutS Homolog 5) protein localizes to mitochondria and protects the mitochondrial genome from oxidative damage. Mitochondrion, 2012, 12, 654-665.	3.4	23
48	Cancer metabolism: current perspectives and future directions. Cell Death and Disease, 2012, 3, e248-e248.	6.3	327
49	PPARÎ ³ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3, 672.	12.8	127
50	Severe Thymic Atrophy in a Mouse Model of Skin Inflammation Accounts for Impaired TNFR1 Signaling. PLoS ONE, 2012, 7, e47321.	2.5	5
51	miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death and Differentiation, 2011, 18, 465-478.	11.2	367
52	Mitochondrial control of caspase-dependent and -independent cell death. Cellular and Molecular Life Sciences, 2010, 67, 1589-1597.	5.4	241
53	Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene, 2010, 29, 1641-1652.	5.9	120
54	Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells. Cell Death and Differentiation, 2010, 17, 1335-1344.	11.2	66

#	Article	IF	CITATIONS
55	Modulation of Caspase-Independent Cell Death Leads to Resensitization of Imatinib Mesylate–Resistant Cells. Cancer Research, 2009, 69, 3013-3020.	0.9	27
56	The caspase-cleaved form of LYN mediates a psoriasis-like inflammatory syndrome in mice. EMBO Journal, 2009, 28, 2449-2460.	7.8	17
57	Novel roles for GAPDH in cell death and carcinogenesis. Cell Death and Differentiation, 2009, 16, 1573-1581.	11.2	232
58	Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. International Journal of Cancer, 2009, 125, 2586-2594.	5.1	99
59	Induction of Immunological Tolerance by Apoptotic Cells Requires Caspase-Dependent Oxidation of High-Mobility Group Box-1 Protein. Immunity, 2008, 29, 21-32.	14.3	518
60	Comparative Proteomics Study Reveals That Bacterial CpG Motifs Induce Tumor Cell Autophagy in Vitro and in Vivo. Molecular and Cellular Proteomics, 2008, 7, 2311-2322.	3.8	24
61	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 129, 983-997.	28.9	464
62	Cytoprotective gene <i>bi-1</i> is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2809-2814.	7.1	158
63	Cytochrome c is released in a single step during apoptosis. Cell Death and Differentiation, 2005, 12, 453-462.	11.2	202
64	Cytoprotective Peptide Humanin Binds and Inhibits Proapoptotic Bcl-2/Bax Family Protein BimEL. Journal of Biological Chemistry, 2005, 280, 15825-15835.	3.4	106
65	Disruption of Mitochondrial Function during Apoptosis Is Mediated by Caspase Cleavage of the p75 Subunit of Complex I of the Electron Transport Chain. Cell, 2004, 117, 773-786.	28.9	543
66	Mitochondrial functions during cell death, a complex (I–V) dilemma. Cell Death and Differentiation, 2003, 10, 488-492.	11.2	101
67	A Unified Model for Apical Caspase Activation. Molecular Cell, 2003, 11, 529-541.	9.7	855
68	Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. Journal of Cell Biology, 2003, 160, 65-75.	5.2	440
69	The P54â€cleaved form of the tyrosine kinase Lyn generated by caspases during BCRâ€induced cell death in B lymphoma acts as a negative regulator of apoptosis. FASEB Journal, 2003, 17, 711-713.	0.5	20
70	The role of ARK in stress-induced apoptosis in Drosophila cells. Journal of Cell Biology, 2002, 156, 1077-1087.	5.2	159
71	T and B leukemic cell lines exhibit different requirements for cell death: correlation between caspase activation, DFF40/DFF45 expression, DNA fragmentation and apoptosis in T cell lines but not in Burkitt's lymphoma. Leukemia, 2002, 16, 700-707.	7.2	29
72	And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie, 2002, 84, 113-121.	2.6	125

#	Article	IF	CITATIONS
73	Blocking NF-κB activation in Jurkat leukemic T cells converts the survival agent and tumor promoter PMA into an apoptotic effector. Oncogene, 2002, 21, 3213-3224.	5.9	46
74	Differential requirements for ERK1/2 and P38 MAPK activation by thrombin in T cells. Role of P59Fyn and PKCε. Oncogene, 2001, 20, 1964-1972.	5.9	31
75	Cleavage of Fyn and Lyn in their N-terminal unique regions during induction of apoptosis: a new mechanism for Src kinase regulation. Oncogene, 2001, 20, 4935-4941.	5.9	55
76	An absolute requirement for Fyn in T cell receptorâ€induced caspase activation and apoptosis. FASEB Journal, 2001, 15, 1777-1779.	0.5	24
77	Caspase inhibition protects from liver injury following ischemia and reperfusion in rats. Transplant International, 2000, 13, S568-S572.	1.6	36
78	Cleavage of the Serum Response Factor during Death Receptor-induced Apoptosis Results in an Inhibition of the c-FOS Promoter Transcriptional Activity. Journal of Biological Chemistry, 2000, 275, 12941-12947.	3.4	44
79	A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. FASEB Journal, 1999, 13, 253-261.	0.5	217
80	Cleavage and relocation of the tyrosine kinase P59FYN during Fas-mediated apoptosis in T lymphocytes. Oncogene, 1999, 18, 3963-3969.	5.9	29
81	T-Cell Receptor Signaling Pathway Exerts a Negative Control on Thrombin-Mediated Increase in [Ca2+]i and p38 MAPK Activation in Jurkat T Cells: Implication of the Tyrosine Kinase p56Lck. Blood, 1998, 91, 4232-4241.	1.4	13
82	Differential expression of the Kell blood group and CD10 antigens: two related membrane metallopeptidases during differentiation of K562 cells by phorbol ester and hemin. FASEB Journal, 1998, 12, 531-539.	0.5	38
83	T-Cell Receptor Signaling Pathway Exerts a Negative Control on Thrombin-Mediated Increase in [Ca2+]i and p38 MAPK Activation in Jurkat T Cells: Implication of the Tyrosine Kinase p56Lck. Blood, 1998, 91, 4232-4241.	1.4	2