Thomas Laux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793942/publications.pdf

Version: 2024-02-01

66315 118793 11,771 61 42 62 citations h-index g-index papers 64 64 64 6696 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Stem Cell Population of Arabidopsis Shoot Meristems Is Maintained by a Regulatory Loop between the CLAVATA and WUSCHEL Genes. Cell, 2000, 100, 635-644.	13.5	1,521
2	Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 1998, 95, 805-815.	13.5	1,487
3	Conserved factors regulate signalling in ArabidopsisÂthaliana shoot and root stem cell organizers. Nature, 2007, 446, 811-814.	13.7	943
4	Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development (Cambridge), 2004, 131, 657-668.	1.2	746
5	Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS. Cell, 2001, 105, 805-814.	13.5	544
6	The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant Journal, 1996, 10, 967-979.	2.8	445
7	The WUS homeobox-containing (WOX) protein family. Genome Biology, 2009, 10, 248.	13.9	354
8	Differential Expression of WOX Genes Mediates Apical-Basal Axis Formation in the Arabidopsis Embryo. Developmental Cell, 2008, 14, 867-876.	3.1	344
9	Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression. Developmental Cell, 2015, 33, 576-588.	3.1	311
10	Plant Stem Cell Niches. Annual Review of Plant Biology, 2012, 63, 615-636.	8.6	280
11	The <i>WUSCHEL</i> and <i>SHOOTMERISTEMLESS</i> genes fulfil complementary roles in <i>Arabidopsis</i> shoot meristem regulation. Development (Cambridge), 2002, 129, 3195-3206.	1.2	279
12	Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development. Developmental Cell, 2011, 20, 264-270.	3.1	253
13	Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development (Cambridge), 2003, 130, 3163-3173.	1.2	246
14	Roles of the Middle Domain–Specific <i>WUSCHEL-RELATED HOMEOBOX</i> Genes in Early Development of Leaves in <i>Arabidopsis</i> Plant Cell, 2012, 24, 519-535.	3.1	234
15	WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes and Development, 2002, 16, 1129-1138.	2.7	213
16	Analysis of the Transcription Factor WUSCHEL and Its Functional Homologue in Antirrhinum Reveals a Potential Mechanism for Their Roles in Meristem Maintenance. Plant Cell, 2006, 18, 560-573.	3.1	203
17	A Protodermal miR394 Signal Defines a Region of Stem Cell Competence in the Arabidopsis Shoot Meristem. Developmental Cell, 2013, 24, 125-132.	3.1	198
18	WOX5 Suppresses CYCLIN D Activity to Establish Quiescence at the Center of the Root Stem Cell Niche. Current Biology, 2014, 24, 1939-1944.	1.8	197

#	Article	IF	CITATIONS
19	APETALA2Regulates the Stem Cell Niche in theArabidopsisShoot Meristem. Plant Cell, 2006, 18, 295-307.	3.1	184
20	Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants, 2019, 5, 18-25.	4.7	163
21	The Stem Cell Concept in Plants. Cell, 2003, 113, 281-283.	13.5	156
22	Genetic Regulation of Embryonic Pattern Formation. Plant Cell, 2004, 16, S190-S202.	3.1	142
23	Stem Cell Regulation by Arabidopsis WOX Genes. Molecular Plant, 2016, 9, 1028-1039.	3.9	137
24	<i>WOX13</i> - <i>like</i> genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss <i>Physcomitrella patens</i> Development (Cambridge), 2014, 141, 1660-1670.	1.2	136
25	Pattern formation during early ovule development in Arabidopsis thaliana. Developmental Biology, 2004, 273, 321-334.	0.9	132
26	Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants, 2018, 4, 548-553.	4.7	123
27	The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development (Cambridge), 2002, 129, 3195-206.	1.2	120
28	Transcriptional integration of paternal and maternal factors in the <i>Arabidopsis</i> zygote. Genes and Development, 2017, 31, 617-627.	2.7	114
29	Apical meristems: the plant's fountain of youth. BioEssays, 2003, 25, 961-970.	1.2	113
30	Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the <i>Arabidopsis </i>	1.2	109
31	Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing. PLoS Genetics, 2009, 5, e1000646.	1.5	107
32	Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem. Plant Cell, 2005, 17, 2271-2280.	3.1	90
33	Connecting the paths in plant stem cell regulation. Trends in Cell Biology, 2007, 17, 403-410.	3.6	90
34	Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 2011, 21, 1009-1017.	1.8	87
35	A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Developmental Cell, 2017, 40, 264-277.e4.	3.1	86
36	Stem cell regulation in the shoot meristem. Journal of Cell Science, 2003, 116, 1659-1666.	1.2	84

#	Article	IF	Citations
37	Integration of pluripotency pathways regulates stem cell maintenance in the <i>Arabidopsis</i> shoot meristem. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22561-22571.	3.3	78
38	WUSCHEL regulates cell differentiation during anther development. Developmental Biology, 2007, 302, 154-159.	0.9	74
39	Somatic embryogenesis from Arabidopsis shoot apical meristem mutants. Planta, 2002, 214, 829-836.	1.6	68
40	<i>MGOUN1</i> Encodes an <i>Arabidopsis</i> Type IB DNA Topoisomerase Required in Stem Cell Regulation and to Maintain Developmentally Regulated Gene Silencing. Plant Cell, 2010, 22, 716-728.	3.1	61
41	Cell–cell signaling in the shoot meristem. Current Opinion in Plant Biology, 2001, 4, 441-446.	3.5	49
42	The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. Sexual Plant Reproduction, 2011, 24, 161-169.	2.2	43
43	The origin of the plant body axis. Current Opinion in Plant Biology, 2012, 15, 578-584.	3.5	40
44	Atkinesin-13A Modulates Cell-Wall Synthesis and Cell Expansion in Arabidopsis thaliana via the THESEUS1 Pathway. PLoS Genetics, 2014, 10, e1004627.	1.5	40
45	Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. Frontiers in Plant Science, 2017, 8, 2054.	1.7	40
46	Signaling in shoot and flower meristems of Arabidopsis thaliana. Current Opinion in Plant Biology, 2014, 17, 96-102.	3.5	39
47	Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis. Frontiers in Plant Science, 2016, 7, 1383.	1.7	37
48	Embryonic development in Arabidopsis thaliana: from the zygote division to the shoot meristem. Frontiers in Plant Science, 2011, 2, 93.	1.7	34
49	ZWILLE buffers meristem stability in Arabidopsis thaliana. Development Genes and Evolution, 2003, 213, 534-540.	0.4	27
50	Signaling pathways maintaining stem cells at the plant shoot apex. Seminars in Cell and Developmental Biology, 2009, 20, 1083-1088.	2.3	26
51	ZLL/AGO10 maintains shoot meristem stem cells during Arabidopsis embryogenesis by down-regulating ARF2-mediated auxin response. BMC Biology, 2015, 13, 74.	1.7	23
52	The role of the integuments in pollen tube guidance in flowering plants. New Phytologist, 2019, 221, 1074-1089.	3.5	21
53	Dose-Dependent AGO1-Mediated Inhibition of the miRNA165/166 Pathway Modulates Stem Cell Maintenance in Arabidopsis Shoot Apical Meristem. Plant Communications, 2020, 1, 100002.	3.6	18
54	OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation. PLoS ONE, 2016, 11, e0155657.	1.1	13

THOMAS LAUX

#	Article	IF	CITATIONS
55	Ageing: How Do Long-Lived Plants Escape Mutational Meltdown?. Current Biology, 2016, 26, R530-R532.	1.8	12
56	Hypoxia Is a Developmental Regulator in Plant Meristems. Molecular Plant, 2019, 12, 1422-1424.	3.9	11
57	Accession-specific modifiers act with ZWILLE/ARGONAUTE10 to maintain shoot meristem stem cells during embryogenesis in Arabidopsis. BMC Genomics, 2013, 14, 809.	1.2	10
58	Plant Development: Adding HAM to Stem Cell Control. Current Biology, 2018, 28, R1261-R1263.	1.8	9
59	Stem cell ageing of the root apical meristem of Arabidopsis thaliana. Mechanisms of Ageing and Development, 2020, 190, 111313.	2.2	6
60	Epigenetically jump starting <i>de novo</i> shoot regeneration. EMBO Journal, 2018, 37, .	3.5	2
61	Editorial. Seminars in Cell and Developmental Biology, 2009, 20, 1082.	2.3	0