## Maria Ciaramella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7939041/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | New Insights into Structural and Functional Roles of Indole-3-acetic acid (IAA): Changes in DNA<br>Topology and Gene Expression in Bacteria. Biomolecules, 2019, 9, 522.                                                      | 4.0  | 8         |
| 2  | The DNA Alkylguanine DNA Alkyltransferase-2 (AGT-2) Of Caenorhabditis Elegans Is Involved In Meiosis<br>And Early Development Under Physiological Conditions. Scientific Reports, 2019, 9, 6889.                              | 3.3  | 10        |
| 3  | Structure and Properties of DNA Molecules Over The Full Range of Biologically Relevant Supercoiling<br>States. Scientific Reports, 2018, 8, 6163.                                                                             | 3.3  | 25        |
| 4  | Interdomain interactions rearrangements control the reaction steps of a thermostable DNA<br>alkyltransferase. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 86-96.                                            | 2.4  | 18        |
| 5  | Every OGT Is Illuminated … by Fluorescent and Synchrotron Lights. International Journal of<br>Molecular Sciences, 2017, 18, 2613.                                                                                             | 4.1  | 14        |
| 6  | In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag. PLoS<br>ONE, 2017, 12, e0185791.                                                                                              | 2.5  | 19        |
| 7  | RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals.<br>Nucleic Acids Research, 2016, 44, 6335-6349.                                                                           | 14.5 | 63        |
| 8  | Crystal structure of <i>Mycobacterium tuberculosis O</i> 6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochemical Journal, 2016, 473, 123-133.                                         | 3.7  | 18        |
| 9  | A novel thermostable protein-tag: optimization of the Sulfolobus solfataricus DNA- alkyl-transferase<br>by protein engineering. Extremophiles, 2016, 20, 1-13.                                                                | 2.3  | 21        |
| 10 | Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein. Nucleic Acids Research, 2015, 43, 8801-8816.                                                        | 14.5 | 26        |
| 11 | Activity and regulation of archaeal DNA alkyltransferase. CONSERVED PROTEIN INVOLVED IN REPAIR OF DNA ALKYLATION DAMAGE Journal of Biological Chemistry, 2015, 290, 885.                                                      | 3.4  | 12        |
| 12 | NurA Is Endowed with Endo- and Exonuclease Activities that Are Modulated by HerA: New Insight into<br>Their Role in DNA-End Processing. PLoS ONE, 2015, 10, e0142345.                                                         | 2.5  | 12        |
| 13 | Chromatin Structure and Dynamics in Hot Environments: Architectural Proteins and DNA<br>Topoisomerases of Thermophilic Archaea. International Journal of Molecular Sciences, 2014, 15,<br>17162-17187.                        | 4.1  | 18        |
| 14 | The Reverse Gyrase from Pyrobaculum calidifontis, a Novel Extremely Thermophilic DNA<br>Topoisomerase Endowed with DNA Unwinding and Annealing Activities. Journal of Biological<br>Chemistry, 2014, 289, 3231-3243.          | 3.4  | 15        |
| 15 | Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA<br>alkyltransferase. Extremophiles, 2014, 18, 895-904.                                                                             | 2.3  | 14        |
| 16 | Biochemical and Structural Studies of the Mycobacterium tuberculosis <i>O</i> <sup>6</sup><br>-Methylguanine Methyltransferase and Mutated Variants. Journal of Bacteriology, 2013, 195, 2728-2736.                           | 2.2  | 29        |
| 17 | Synergic and Opposing Activities of Thermophilic RecQ-like Helicase and Topoisomerase 3 Proteins in Holliday Junction Processing and Replication Fork Stabilization. Journal of Biological Chemistry, 2012, 287, 30282-30295. | 3.4  | 13        |
| 18 | Activity and Regulation of Archaeal DNA Alkyltransferase. Journal of Biological Chemistry, 2012, 287, 4222-4231                                                                                                               | 3.4  | 37        |

MARIA CIARAMELLA

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Positive supercoiling in thermophiles and mesophiles: of the good and evil. Biochemical Society Transactions, 2011, 39, 58-63.                                                                                                                                | 3.4  | 19        |
| 20 | The Archaeal Topoisomerase Reverse Gyrase Is a Helix-destabilizing Protein That Unwinds Four-way DNA Junctions. Journal of Biological Chemistry, 2010, 285, 36532-36541.                                                                                      | 3.4  | 8         |
| 21 | Inhibition of translesion DNA polymerase by archaeal reverse gyrase. Nucleic Acids Research, 2009, 37, 4287-4295.                                                                                                                                             | 14.5 | 23        |
| 22 | Reverse gyrase and genome stability in hyperthermophilic organisms. Biochemical Society<br>Transactions, 2009, 37, 69-73.                                                                                                                                     | 3.4  | 41        |
| 23 | Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular<br>machine â€. Nucleic Acids Research, 2008, 36, 4587-4597.                                                                                                   | 14.5 | 26        |
| 24 | The Prefoldin of the Crenarchaeon Sulfolobus solfataricus. Protein and Peptide Letters, 2008, 15, 1055-1062.                                                                                                                                                  | 0.9  | 4         |
| 25 | Lack of Strand-specific Repair of UV-induced DNA Lesions in Three Genes of the Archaeon Sulfolobus solfataricus. Journal of Molecular Biology, 2007, 365, 921-929.                                                                                            | 4.2  | 20        |
| 26 | Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms. Italian Journal of<br>Biochemistry, 2007, 56, 103-9.                                                                                                                               | 0.3  | 8         |
| 27 | Selective degradation of reverse gyrase and DNA fragmentation induced by alkylating agent in the archaeon Sulfolobus solfataricus. Nucleic Acids Research, 2006, 34, 2098-2108.                                                                               | 14.5 | 38        |
| 28 | Functional interaction of reverse gyrase with single-strand binding protein of the archaeon<br>Sulfolobus. Nucleic Acids Research, 2005, 33, 564-576.                                                                                                         | 14.5 | 25        |
| 29 | Another extreme genome: how to live at pH 0. Trends in Microbiology, 2005, 13, 49-51.                                                                                                                                                                         | 7.7  | 47        |
| 30 | Reverse Gyrase Recruitment to DNA after UV Light Irradiation in Sulfolobus solfataricus. Journal of<br>Biological Chemistry, 2004, 279, 33192-33198.                                                                                                          | 3.4  | 46        |
| 31 | Transcriptional response to DNA damage in the archaeon Sulfolobus solfataricus. Nucleic Acids<br>Research, 2003, 31, 6127-6138.                                                                                                                               | 14.5 | 33        |
| 32 | DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus. Nucleic Acids Research, 2002, 30, 2656-2662.                                                                                                 | 14.5 | 57        |
| 33 | Ionic network at the C-terminus of the ?-glycosidase from the hyperthermophilic archaeonSulfolobus<br>solfataricus: Functional role in the quaternary structure thermal stabilization. Proteins: Structure,<br>Function and Bioinformatics, 2002, 48, 98-106. | 2.6  | 19        |
| 34 | Molecular biology of extremophiles: recent progress on the hyperthermophilic archaeon Sulfolobus.<br>Antonie Van Leeuwenhoek, 2002, 81, 85-97.                                                                                                                | 1.7  | 23        |
| 35 | β-Glycosidase from Sulfolobus solfataricus. Methods in Enzymology, 2001, 330, 201-215.                                                                                                                                                                        | 1.0  | 21        |
| 36 | Enzymatic synthesis of oligosaccharides by two glycosyl hydrolases of Sulfolobus solfataricus.<br>Extremophiles, 2001, 5, 145-152.                                                                                                                            | 2.3  | 20        |

MARIA CIARAMELLA

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Novel Member of the Bacterial-Archaeal Regulator Family Is a Nonspecific DNA-binding Protein and<br>Induces Positive Supercoiling. Journal of Biological Chemistry, 2001, 276, 10745-10752.                                                | 3.4  | 27        |
| 38 | Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal β-glycosidases. Extremophiles, 2000, 4, 157-164.                                                                                                    | 2.3  | 32        |
| 39 | An Lrp-Like Protein of the Hyperthermophilic Archaeon <i>Sulfolobus solfataricus</i> Which Binds to<br>Its Own Promoter. Journal of Bacteriology, 1999, 181, 1474-1480.                                                                      | 2.2  | 75        |
| 40 | Molecular biology of hyperthermophilic Archaea. Advances in Biochemical<br>Engineering/Biotechnology, 1998, 61, 87-115.                                                                                                                      | 1.1  | 11        |
| 41 | Restoration of the Activity of Active-Site Mutants of the Hyperthermophilic β-Glycosidase<br>fromSulfolobus solfataricus: Dependence of the Mechanism on the Action of External Nucleophilesâ€.<br>Biochemistry, 1998, 37, 17262-17270.      | 2.5  | 110       |
| 42 | Structure and Reaction Mechanism of the β-Glycosidase from the Archaeon Sulfolobus Solfataricus. ,<br>1998, , 209-212.                                                                                                                       |      | 0         |
| 43 | Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein. Journal of Molecular Biology, 1997, 267, 841-848.                                                                              | 4.2  | 46        |
| 44 | Crystal structure of the β-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus:<br>resilience as a key factor in thermostability. Journal of Molecular Biology, 1997, 271, 789-802.                                       | 4.2  | 235       |
| 45 | Do the hemoglobinless icefishes have globin genes?. Comparative Biochemistry and Physiology A,<br>Comparative Physiology, 1997, 118, 1027-1030.                                                                                              | 0.6  | 29        |
| 46 | PCR amplification and cloning of metallothionein complementary DNAs in temperate and Antarctic sea<br>urchin characterized by a large difference in egg metallothionein content. Cellular and Molecular<br>Life Sciences, 1997, 53, 472-477. | 5.4  | 16        |
| 47 | Identification of two glutamic acid residues essential for catalysis in the β-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus. Protein Engineering, Design and Selection, 1996, 9, 1191-1195.                        | 2.1  | 50        |
| 48 | Industrial-Scale Production of Thermostable Enzymes: The Model-System of the β-Glycosidase from<br>Sulfolobus Solfataricus. , 1996, , 89-99.                                                                                                 |      | 0         |
| 49 | Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes Proceedings of the United States of America, 1995, 92, 1817-1821.                                                                                           | 7.1  | 162       |
| 50 | Molecular biology of extremophiles. World Journal of Microbiology and Biotechnology, 1995, 11,<br>71-84.                                                                                                                                     | 3.6  | 32        |
| 51 | Thermostable β-Glycosidase fromSulfolobus Solfataricus. Biocatalysis, 1994, 11, 89-103.                                                                                                                                                      | 0.9  | 34        |
| 52 | Saccharomyces cerevisiaemultifunctional protein RAP1 binds to a conserved sequence in the Polyoma virus enhancer and is responsible for its transcriptional activity in yeast cells. FEBS Letters, 1993, 323, 77-82.                         | 2.8  | 3         |
| 53 | Structure, evolution and properties of a novel repetitive DNA family inCaenorhabditis elegans.<br>Nucleic Acids Research, 1988, 16, 8213-8231.                                                                                               | 14.5 | 20        |
| 54 | Foreign transcriptional enhancers in yeast. II. Interplay of the polyomavirus transcriptional enhancer<br>and Saccharomyces cerevisiae promoter elements. Nucleic Acids Research, 1988, 16, 8869-8886.                                       | 14.5 | 4         |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Foreign transcriptional enhancers in yeast. I. Interactions of papovavirus transcriptional enhancers<br>and a quiescent pseudopromoter on supercoiled plasmids. Nucleic Acids Research, 1988, 16, 8847-8868. | 14.5 | 7         |
| 56 | New control elements of bacteriophage T4 pre-replicative transcription. Journal of Molecular<br>Biology, 1985, 182, 249-263.                                                                                 | 4.2  | 22        |