List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7938890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature, 2002, 418, 512-514.	27.8	686
2	Scanningless depth-resolved microscopy. Optics Express, 2005, 13, 1468.	3.4	440
3	Tetragonal CH ₃ NH ₃ PbI ₃ is ferroelectric. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5504-E5512.	7.1	240
4	Multiphoton plasmon-resonance microscopy. Optics Express, 2003, 11, 1385.	3.4	235
5	Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy. Physical Review Letters, 2003, 90, 213902.	7.8	217
6	Multiexcitons in type-II colloidal semiconductor quantum dots. Physical Review B, 2007, 75, .	3.2	206
7	Built-in Quantum Dot Antennas in Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 1293-1298.	14.6	191
8	Nucleation, Growth, and Structural Transformations of Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 1302-1308.	6.7	188
9	Super-resolution enhancement by quantum image scanning microscopy. Nature Photonics, 2019, 13, 116-122.	31.4	157
10	Transient Fluorescence of the Off State in Blinking CdSe/CdS/ZnS Semiconductor Nanocrystals Is Not Governed by Auger Recombination. Physical Review Letters, 2010, 104, 157404.	7.8	154
11	A Mechanistic Study of Phase Transformation in Perovskite Nanocrystals Driven by Ligand Passivation. Chemistry of Materials, 2018, 30, 84-93.	6.7	154
12	The Mechanism of Color Change in the Neon Tetra Fish: a Lightâ€Induced Tunable Photonic Crystal Array. Angewandte Chemie - International Edition, 2015, 54, 12426-12430.	13.8	152
13	Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Optics Letters, 2005, 30, 1686.	3.3	150
14	Selfâ€Healing Inside APbBr ₃ Halide Perovskite Crystals. Advanced Materials, 2018, 30, 1706273.	21.0	149
15	Narrow-Band Coherent Anti-Stokes Raman Signals from Broad-Band Pulses. Physical Review Letters, 2002, 88, 063004.	7.8	144
16	Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Optics Express, 2008, 16, 22039.	3.4	140
17	Geometrical representation of sum frequency generation and adiabatic frequency conversion. Physical Review A, 2008, 78, .	2.5	139
18	Guanineâ€Based Biogenic Photonicâ€Crystal Arrays in Fish and Spiders. Advanced Functional Materials, 2010, 20, 320-329	14.9	136

#	Article	IF	CITATIONS
19	Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy. Physical Review Letters, 2002, 89, 273001.	7.8	129
20	Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy. Nano Letters, 2016, 16, 7467-7473.	9.1	129
21	Luminescence upconversion in colloidal double quantum dots. Nature Nanotechnology, 2013, 8, 649-653.	31.5	126
22	Quantum control of coherent anti-Stokes Raman processes. Physical Review A, 2002, 65, .	2.5	123
23	Superresolution Microscopy with Quantum Emitters. Nano Letters, 2013, 13, 5832-5836.	9.1	120
24	Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region. Journal of Chemical Physics, 2003, 118, 9208-9215.	3.0	119
25	Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature. ACS Nano, 2012, 6, 10013-10023.	14.6	111
26	Hybrid PbS Quantumâ€Dotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e18010	1610.0	111
27	Functional patterned multiphoton excitation deep inside scattering tissue. Nature Photonics, 2013, 7, 274-278.	31.4	103
28	Robust adiabatic sum frequency conversion. Optics Express, 2009, 17, 12731.	3.4	99
29	Widefield lensless imaging through a fiber bundle via speckle correlations. Optics Express, 2016, 24, 16835.	3.4	99
30	Coherent Transient Enhancement of Optically Induced Resonant Transitions. Physical Review Letters, 2002, 88, 123004.	7.8	96
31	Depth-resolved structural imaging by third-harmonic generation microscopy. Journal of Structural Biology, 2004, 147, 3-11.	2.8	96
32	Full control of the spectral polarization of ultrashort pulses. Optics Letters, 2006, 31, 631.	3.3	91
33	The image-forming mirror in the eye of the scallop. Science, 2017, 358, 1172-1175.	12.6	90
34	Secondâ€Harmonic Generation from a Single Core/Shell Quantum Dot. Small, 2009, 5, 2835-2840.	10.0	89
35	Structural Basis for the Brilliant Colors of the Sapphirinid Copepods. Journal of the American Chemical Society, 2015, 137, 8408-8411.	13.7	89
36	Universal Role of Discrete Acoustic Phonons in the Low-Temperature Optical Emission of Colloidal Quantum Dots. Physical Review Letters, 2009, 102, 177402.	7.8	87

#	Article	IF	CITATIONS
37	Two-photon optogenetics. Progress in Brain Research, 2012, 196, 119-143.	1.4	84
38	Spatiotemporal coherent control using shaped, temporally focused pulses. Optics Express, 2005, 13, 9903.	3.4	78
39	Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation. Biomedical Optics Express, 2013, 4, 2869.	2.9	77
40	Temperature Rise under Two-Photon Optogenetic Brain Stimulation. Cell Reports, 2018, 24, 1243-1253.e5.	6.4	77
41	An Upper Bound to Carrier Multiplication Efficiency in Type II Colloidal Quantum Dots. Nano Letters, 2010, 10, 164-170.	9.1	76
42	Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp. Optics Letters, 2011, 36, 707.	3.3	74
43	Certain Biominerals in Leaves Function as Light Scatterers. Advanced Materials, 2012, 24, OP77-83.	21.0	74
44	Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH ₃ NH ₃ PbI ₃ . Small, 2017, 13, 1700953.	10.0	73
45	Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna. Advanced Materials, 2012, 24, OP314-20.	21.0	72
46	Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out. Accounts of Chemical Research, 2021, 54, 1409-1418.	15.6	72
47	Quantum Control of the Angular Momentum Distribution in Multiphoton Absorption Processes. Physical Review Letters, 2004, 92, 103003.	7.8	69
48	Dependence of the Absorption and Optical Surface Plasmon Scattering of MoS ₂ Nanoparticles on Aspect Ratio, Size, and Media. ACS Nano, 2014, 8, 3575-3583.	14.6	63
49	Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nature Communications, 2017, 8, 14786.	12.8	62
50	The Structural Basis for Enhanced Silver Reflectance in Koi Fish Scale and Skin. Journal of the American Chemical Society, 2014, 136, 17236-17242.	13.7	61
51	Self-Assembled Organic Nanocrystals with Strong Nonlinear Optical Response. Nano Letters, 2015, 15, 7232-7237.	9.1	59
52	Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum. Journal of Physical Chemistry C, 2013, 117, 22203-22210.	3.1	58
53	Efficient electron injection in non-toxic silver sulfide (Ag2S) sensitized solar cells. Journal of Power Sources, 2013, 240, 8-13.	7.8	58
54	Growth-Etch Metal–Organic Chemical Vapor Deposition Approach of WS ₂ Atomic Layers. ACS Nano, 2021, 15, 526-538.	14.6	56

#	Article	IF	CITATIONS
55	Long-Range Electronic-to-Vibrational Energy Transfer from Nanocrystals to Their Surrounding Matrix Environment. Physical Review Letters, 2008, 100, 057404.	7.8	54
56	Broadband Near-Infrared to Visible Upconversion in Quantum Dot–Quantum Well Heterostructures. ACS Nano, 2016, 10, 446-452.	14.6	54
57	Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids. ACS Nano, 2020, 14, 4196-4205.	14.6	53
58	Temporal focusing with spatially modulated excitation. Optics Express, 2009, 17, 5391.	3.4	52
59	Quantum Dot Antennas for Photoelectrochemical Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1917-1924.	4.6	52
60	Multiexciton spectroscopy of semiconductor nanocrystals under quasi-continuous-wave optical pumping. Physical Review B, 2006, 74, .	3.2	51
61	Large Blue Shift of the Biexciton State in Tellurium Doped CdSe Colloidal Quantum Dots. Nano Letters, 2008, 8, 2384-2387.	9.1	51
62	Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Optics Letters, 2003, 28, 2315.	3.3	49
63	Background-Free Third Harmonic Imaging of Gold Nanorods. Nano Letters, 2009, 9, 4093-4097.	9.1	49
64	Lightâ€Induced Color Change in the Sapphirinid Copepods: Tunable Photonic Crystals. Advanced Functional Materials, 2016, 26, 1393-1399.	14.9	48
65	Two-Color Antibunching from Band-Gap Engineered Colloidal Semiconductor Nanocrystals. Nano Letters, 2012, 12, 2948-2952.	9.1	46
66	Exciton Quenching Due to Copper Diffusion Limits the Photocatalytic Activity of CdS/Cu ₂ S Nanorod Heterostructures. Journal of Physical Chemistry Letters, 2014, 5, 590-596.	4.6	45
67	Strong light–matter interaction in tungsten disulfide nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 20812-20820.	2.8	44
68	Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses. Physical Review A, 2005, 72, .	2.5	43
69	Quantum correlation measurement with single photon avalanche diode arrays. Optics Express, 2019, 27, 32863.	3.4	42
70	Temperature Dependence of Optical Gain in CdSe/ZnS Quantum Rods. Journal of Physical Chemistry C, 2007, 111, 7898-7905.	3.1	39
71	Colloidal Double Quantum Dots. Accounts of Chemical Research, 2016, 49, 902-910.	15.6	39
72	Optically functional isoxanthopterin crystals in the mirrored eyes of decapod crustaceans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2299-2304.	7.1	39

#	Article	IF	CITATIONS
73	The Organic Crystalline Materials of Vision: Structure–Function Considerations from the Nanometer to the Millimeter Scale. Advanced Materials, 2018, 30, e1800006.	21.0	38
74	CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion. ACS Nano, 2020, 14, 4206-4215.	14.6	36
75	Studying Quantum Dot Blinking through the Addition of an Engineered Inorganic Hole Trap. ACS Nano, 2013, 7, 5084-5090.	14.6	35
76	Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber. Optics Letters, 2016, 41, 3531.	3.3	35
77	SOFISM: Super-resolution optical fluctuation image scanning microscopy. Optica, 2020, 7, 1308.	9.3	35
78	Harmonic generation with temporally focused ultrashort pulses. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2660.	2.1	34
79	Colloidal Quantum Dots as Probes of Excitation Field Enhancement in Photonic Antennas. ACS Nano, 2010, 4, 4571-4578.	14.6	34
80	Mineral Deposits in <i>Ficus</i> Leaves: Morphologies and Locations in Relation to Function. Plant Physiology, 2018, 176, 1751-1763.	4.8	34
81	Chiral and SHG-Active Metal–Organic Frameworks Formed in Solution and on Surfaces: Uniformity, Morphology Control, Oriented Growth, and Postassembly Functionalization. Journal of the American Chemical Society, 2020, 142, 14210-14221.	13.7	34
82	From dilute isovalent substitution to alloying in CdSeTe nanoplatelets. Physical Chemistry Chemical Physics, 2016, 18, 15295-15303.	2.8	33
83	Plants and Light Manipulation: The Integrated Mineral System in Okra Leaves. Advanced Science, 2017, 4, 1600416.	11.2	33
84	Energetics of CdSe Quantum Dots Adsorbed on TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 13236-13241.	3.1	32
85	Chiral 2D Colloidal Semiconductor Quantum Wells. Advanced Functional Materials, 2018, 28, 1802012.	14.9	32
86	PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Nanoscale Advances, 2019, 1, 4109-4118.	4.6	32
87	Direct single-shot phase retrieval from the diffraction pattern of separated objects. Nature Communications, 2016, 7, 10820.	12.8	31
88	In situ growth of α-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. Journal of Materials Chemistry C, 2019, 7, 6795-6804.	5.5	31
89	Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology. ACS Photonics, 2018, 5, 4788-4800.	6.6	30
90	Photo-Induced Dipoles: A New Method to Convert Photons into Photovoltage in Quantum Dot Sensitized Solar Cells. Nano Letters, 2013, 13, 4456-4461.	9.1	29

DAN ORON

#	Article	IF	CITATIONS
91	Colloidal Mercury-Doped CdSe Nanoplatelets with Dual Fluorescence. Chemistry of Materials, 2019, 31, 5065-5074.	6.7	29
92	Observing Multiexciton Correlations in Colloidal Semiconductor Quantum Dots <i>via</i> Multiple-Quantum Two-Dimensional Fluorescence Spectroscopy. ACS Nano, 2021, 15, 4647-4657.	14.6	29
93	All-optical processing in coherent nonlinear spectroscopy. Physical Review A, 2004, 70, .	2.5	28
94	A Present Understanding of Colloidal Quantum Dot Blinking. Israel Journal of Chemistry, 2012, 52, 992-1001.	2.3	28
95	Strain-Induced Type II Band Alignment Control in CdSe Nanoplatelet/ZnS-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 11136-11143.	3.1	28
96	The Dual Functional Reflecting Iris of the Zebrafish. Advanced Science, 2018, 5, 1800338.	11.2	28
97	Determination of the Electronic Energetics of CdTe Nanoparticle Assemblies on Au Electrodes by Photoemission, Electrochemical, and Photocurrent Studies. Journal of Physical Chemistry C, 2012, 116, 17464-17472.	3.1	27
98	Enhanced Third-Harmonic Generation from a Metal/Semiconductor Core/Shell Hybrid Nanostructure. ACS Nano, 2015, 9, 8064-8069.	14.6	27
99	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	5.8	27
100	A highly reflective biogenic photonic material from core–shell birefringent nanoparticles. Nature Nanotechnology, 2020, 15, 138-144.	31.5	26
101	Resolving the Controversy in Biexciton Binding Energy of Cesium Lead Halide Perovskite Nanocrystals through Heralded Single-Particle Spectroscopy. ACS Nano, 2021, 15, 19581-19587.	14.6	26
102	Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging. Optics Express, 2019, 27, 21778.	3.4	25
103	Ceneration of a dark nonlinear focus by spatio-temporal coherent control. Optics Communications, 2006, 264, 482-487.	2.1	24
104	Energetics and dynamics of exciton–exciton interactions in compound colloidal semiconductor quantum dots. Physical Chemistry Chemical Physics, 2011, 13, 3210.	2.8	24
105	The Second Order Nonlinear Susceptibility of Quantum Confined Semiconductors—A Single Dot Study. Journal of Physical Chemistry C, 2011, 115, 4558-4563.	3.1	24
106	Design Principles of FRETâ€Based Dyeâ€5ensitized Solar Cells with Buried Quantum Dot Donors. Advanced Energy Materials, 2011, 1, 626-633.	19.5	24
107	Facile in situ synthesis of dendrite-like ZnO/ZnTe core/shell nanorod heterostructures for sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 4740-4747.	5.5	24
108	Terahertz coherent anti-Stokes Raman scattering microscopy. Optica, 2019, 6, 52.	9.3	24

#	Article	IF	CITATIONS
109	Confocal microscopic imaging of fast UV-laser photolysis of caged compounds. Journal of Neuroscience Methods, 2004, 133, 153-159.	2.5	22
110	Colloidal Quantum Dots as Saturable Fluorophores. ACS Nano, 2012, 6, 8778-8782.	14.6	22
111	Spectral Analog of the Gouy Phase Shift. Physical Review Letters, 2013, 110, 143902.	7.8	22
112	Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect. ACS Photonics, 2018, 5, 2860-2867.	6.6	22
113	Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry. Nano Letters, 2017, 17, 842-850.	9.1	21
114	Temperature Dependence of Excitonic and Biexcitonic Decay Rates in Colloidal Nanoplatelets by Time-Gated Photon Correlation. Journal of Physical Chemistry Letters, 2020, 11, 6513-6518.	4.6	20
115	Heralded Spectroscopy Reveals Exciton–Exciton Correlations in Single Colloidal Quantum Dots. Nano Letters, 2021, 21, 6756-6763.	9.1	19
116	Rapid quantum image scanning microscopy by joint sparse reconstruction. Optica, 2019, 6, 1290.	9.3	19
117	Apertureless Near-Field Distance-Dependent Lifetime Imaging and Spectroscopy of Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 16306-16311.	3.1	18
118	Study of Quantum Dot/Inorganic Layer/Dye Molecule Sandwich Structure for Electrochemical Solar Cells. Journal of Physical Chemistry C, 2012, 116, 15185-15191.	3.1	18
119	Direct phase retrieval in double blind Fourier holography. Optics Express, 2014, 22, 24935.	3.4	18
120	Band alignment and charge transfer in CsPbBr3–CdSe nanoplatelet hybrids coupled by molecular linkers. Journal of Chemical Physics, 2019, 151, 174704.	3.0	18
121	Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures. Optics Express, 2011, 19, 6657.	3.4	17
122	Inhibition of charge transfer and recombination processes in CdS/N719 co-sensitized solar cell with high conversion efficiency. Electrochimica Acta, 2016, 191, 16-22.	5.2	17
123	Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Advances, 2016, 6, 21156-21164.	3.6	17
124	Higher-Order Photon Correlation as a Tool To Study Exciton Dynamics in Quasi-2D Nanoplatelets. Nano Letters, 2019, 19, 8741-8748.	9.1	17
125	Third-harmonic generation with cylindrical Gaussian beams. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 1964.	2.1	16
126	How Isolated Are the Electronic States of the Core in Core/Shell Nanoparticles?. ACS Nano, 2011, 5, 863-869.	14.6	16

#	Article	IF	CITATIONS
127	The Mechanism of Color Change in the Neon Tetra Fish: a Lightâ€Induced Tunable Photonic Crystal Array. Angewandte Chemie, 2015, 127, 12603-12607.	2.0	16
128	Impulsive Raman spectroscopy via precision measurement of frequency shift with low energy excitation. Optics Letters, 2018, 43, 470.	3.3	16
129	Synergistic recombination suppression by an inorganic layer and organic dye molecules in highly photostable quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 6250.	2.8	15
130	Revisiting the Anion Framework Conservation in Cation Exchange Processes. Chemistry of Materials, 2016, 28, 7872-7877.	6.7	15
131	How Quickly Does a Hole Relax into an Engineered Defect State in CdSe Quantum Dots. ACS Nano, 2012, 6, 3063-3069.	14.6	14
132	Charge Transfer Dynamics in CdS and CdSe@CdS Based Hybrid Nanorods Tipped with Both PbS and Pt. Journal of Physical Chemistry C, 2016, 120, 15453-15459.	3.1	13
133	On the 2D Phase Retrieval Problem. IEEE Transactions on Signal Processing, 2017, 65, 1058-1067.	5.3	13
134	Band Gap Engineering Improves the Efficiency of Double Quantum Dot Upconversion Nanocrystals. Advanced Functional Materials, 2019, 29, 1900755.	14.9	13
135	Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. Optics Letters, 2019, 44, 5153.	3.3	13
136	Photophysics of Voltage Increase by Photoinduced Dipole Layers in Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2717-2722.	4.6	12
137	Vibrational spectroscopy via stimulated Raman induced Kerr lensing. APL Photonics, 2018, 3, .	5.7	12
138	Bright Near-Infrared to Visible Upconversion Double Quantum Dots Based on a Type-II/Type-I Heterostructure. ACS Photonics, 2021, 8, 1909-1916.	6.6	12
139	Using variable pupil filters to optimize the resolution in multiphoton and saturable fluorescence confocal microscopy. Optics Letters, 2009, 34, 464.	3.3	11
140	Development of Lipid-Coated Semiconductor Nanosensors for Recording of Membrane Potential in Neurons. ACS Photonics, 2020, 7, 1141-1152.	6.6	11
141	Polarity-dependent nonlinear optics of nanowires under electric field. Nature Communications, 2021, 12, 3286.	12.8	11
142	Spatio-temporal X-wave. Optics Express, 2009, 17, 18659.	3.4	10
143	Interactions of bound excitons in doped core/shell quantum dot heterostructures. Physical Review B, 2010, 82, .	3.2	10
144	Nonlinear pulse shaping by coherent addition of multiple redshifted solitons. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1716.	2.1	10

#	Article	IF	CITATIONS
145	Controlling morphology and charge transfer in ZnO/polythiophene photovoltaic films. Journal of Materials Chemistry C, 2014, 2, 4167-4176.	5.5	10
146	Vertically aligned ZnO/ZnTe core/shell heterostructures on an AZO substrate for improved photovoltaic performance. RSC Advances, 2017, 7, 14837-14845.	3.6	10
147	Excitation and Emission Transition Dipoles of Type-II Semiconductor Nanorods. Nano Letters, 2019, 19, 1695-1700.	9.1	10
148	Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites. Journal of Physical Chemistry C, 2020, 124, 26769-26779.	3.1	10
149	Semiconductor quantum dot–inorganic nanotube hybrids. Physical Chemistry Chemical Physics, 2012, 14, 4271.	2.8	9
150	Large Pore Size and High Porosity of TiO ₂ Photoanode for Excellent Photovoltaic Performance of CdS Quantum Dot Sensitized Solar Cell. Journal of Nanoscience and Nanotechnology, 2013, 13, 1095-1100.	0.9	9
151	Optical properties of spherulite opals. Optics Letters, 2019, 44, 5860.	3.3	9
152	Optical sectioning by multiexcitonic ladder climbing in colloidal quantum dots. Optics Letters, 2008, 33, 2089.	3.3	8
153	Temporal Focusing Microscopy. Cold Spring Harbor Protocols, 2015, 2015, pdb.top085928.	0.3	8
154	NIR-to-visible upconversion in quantum dots <i>via</i> a ligand induced charge transfer state. RSC Advances, 2019, 9, 12153-12161.	3.6	8
155	Directing the Morphology, Packing, and Properties of Chiral Metal–Organic Frameworks by Cation Exchange**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
156	Long-Lived Population Inversion in Isovalently Doped Quantum Dots. ACS Nano, 2015, 9, 817-824.	14.6	7
157	Phase retrieval in multicore fiber bundles. Optics Letters, 2017, 42, 647.	3.3	7
158	Single-shot noninterferometric measurement of the phase transmission matrix in multicore fibers. Optics Letters, 2018, 43, 4493.	3.3	7
159	Low frequency coherent Raman spectroscopy. JPhys Photonics, 2021, 3, 042004.	4.6	7
160	Understanding and Promoting Molecular Interactions and Charge Transfer in Dye-Mediated Hybrid Photovoltaic Materials. Journal of Physical Chemistry C, 2014, 118, 25374-25391.	3.1	5
161	Mode conversion via wavefront shaping. Optics Express, 2018, 26, 22208.	3.4	5
162	Measuring the optical properties of nanoscale biogenic spherulites. Optics Express, 2021, 29, 20863.	3.4	5

#	Article	IF	CITATIONS
163	Remanent Polarization and Strong Photoluminescence Modulation by an External Electric Field in Epitaxial CsPbBr ₃ Nanowires. ACS Nano, 2021, 15, 16130-16138.	14.6	5
164	Halide chemical vapor deposition of 2D semiconducting atomically-thin crystals: From self-seeded to epitaxial growth. Applied Materials Today, 2022, 26, 101379.	4.3	5
165	Grazing-incidence optical magnetic recording with super-resolution. Beilstein Journal of Nanotechnology, 2017, 8, 28-37.	2.8	4
166	Spectrally narrow features in a supercontinuum generated by shaped pulse trains. Optics Express, 2018, 26, 5694.	3.4	4
167	Low Frequency Collinear Pre-Resonant Impulsive Stimulated Raman Microspectroscopy. ACS Photonics, 2020, 7, 3481-3488.	6.6	4
168	cSPARCOM: Multi-detector reconstruction by confocal super-resolution correlation microscopy. Optics Express, 2021, 29, 12772.	3.4	4
169	High-speed low-frequency chirped coherent anti-Stokes Raman scattering microscopy using an ultra-steep long-pass filter. Optics Express, 2019, 27, 35993.	3.4	4
170	Shot noise limited characterization of ultraweak femtosecond pulse trains. Optics Express, 2011, 19, 679.	3.4	3
171	Evidence for laser-induced homogeneous oriented ice nucleation revealed via pulsed x-ray diffraction. Journal of Chemical Physics, 2020, 153, 024504.	3.0	3
172	Simplified approach to low-frequency coherent anti-Stokes Raman spectroscopy using a sharp spectral edge filter. Optics Letters, 2019, 44, 3637.	3.3	3
173	Super-resolved second harmonic generation imaging by coherent image scanning microscopy. Applied Physics Letters, 2022, 120, .	3.3	3
174	Directing the Morphology, Packing, and Properties of Chiral MetalOrganic Frameworks by Cation Exchange. Angewandte Chemie, 0, , .	2.0	3
175	A Nanoscopic View of Photoinduced Charge Transfer in Organic Nanocrystalline Heterojunctions. Journal of Physical Chemistry C, 2019, 123, 25031-25041.	3.1	2
176	Super-resolution optical fluctuation image scanning microscopy (SOFISM). , 2019, , .		2
177	Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature. , 2013, , .		1
178	Practical aspects of super-resolution optical fluctuation image scanning microscopy (SOFISM). , 2020, , .		1
179	Impulsive SRS microscopy. , 2022, , 99-113.		1

#	Article	IF	CITATIONS
181	Multiphoton microscopy by multiexcitonic ladder climbing in colloidal quantum dots. Proceedings of SPIE, 2009, , .	0.8	0
182	Sub-diffraction limited imaging with fluorophores exhibiting emission depletion upon saturation. Optics Express, 2009, 17, 963.	3.4	0
183	Experimental control over soliton interaction in optical fiber by pre-shaped input field. , 2012, , .		0
184	Experimental observation of the spectral Gouy phase shift. , 2013, , .		0
185	Quantum dots: using the known as well as exploring the unknown. Proceedings of SPIE, 2014, , .	0.8	0
186	A humble leader. Nature Photonics, 2019, 13, 581-582.	31.4	0
187	Single-photon fiber bundle cameras (SFICAMs) for quantum enhanced superresolution microscopy. , 2017, , .		0
188	Detecting Short Voltage Pulses Using Single Quantum Dots Designed for Action Potential Sensing. , 0, , .		0
189	Luminescence Upconversion in Designer Semiconductor Nanocrystals. , 0, , .		0
190	Quantum image scanning microscopy: concept and considerations towards applicability. , 2019, , .		0
191	Ratiometric widefield imaging with spectrally balanced detection. Biomedical Optics Express, 2019, 10, 5385.	2.9	0
192	Natural Photonic Structures from Birefringent Core-Shell Nanoparticles. Optics and Photonics News, 2020, 31, 51.	0.5	0
193	Detecting Short Voltage Pulses Using Single Quantum Dots Designed for Action Potential Sensing. , 0, , .		0
194	Luminescence Upconversion in Designer Semiconductor Nanocrystals. , 0, , .		0
195	Influence of molecular linkers on photoinduced charge transfer dynamics in CsPbBr3-CdSe nanoplatelet hybrids. , 0, , .		0
196	Ligand Mediated Phase and Habit Transformations of Perovskite Nanocrystals. , 0, , .		0
197	Photon correlations as a spectroscopic tool to study multiexciton dynamics in colloidal semiconductor nanocrystals. , 0, , .		0
198	Temperature Dependence of Excitonic and Biexcitonic Decay Rates in Single Colloidal Nanoplatelets. , 0, , .		0

#	Article	IF	CITATIONS
199	Heralded spectroscopy of multiexciton interactions in single colloidal nanocrystals. , 0, , .		0
200	SPAD array technology enables fluctuation-contrast super-resolution in a confocal microscope. , 2021, , .		0