Peter Sander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7938046/publications.pdf

Version: 2024-02-01

90 papers 4,948 citations

38 h-index 98798 67 g-index

94 all docs 94 docs citations

times ranked

94

5423 citing authors

#	Article	IF	CITATIONS
1	Photochemically-Mediated Inflammation and Cross-Presentation of Mycobacterium bovis BCG Proteins Stimulates Strong CD4 and CD8 T-Cell Responses in Mice. Frontiers in Immunology, 2022, 13, 815609.	4.8	3
2	Apramycin Overcomes the Inherent Lack of Antimicrobial Bactericidal Activity in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0151021.	3.2	7
3	Aquimarins, Peptide Antibiotics with Aminoâ€Modified Câ€Termini from a Spongeâ€Derived <i>Aquimarina</i> Sp. Bacterium. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
4	Aquimarins, Peptide Antibiotics with Aminoâ€Modified Câ€Termini from a Spongeâ€Derived <i>Aquimarina</i> sp. Bacterium. Angewandte Chemie, 2022, 134, .	2.0	3
5	<i>In Vitro</i> Bedaquiline and Clofazimine Susceptibility Testing in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2022, 66, e0234621.	3.2	6
6	Rifabutin Is Inactivated by Mycobacterium abscessus Arr. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	16
7	Mortality from drug-resistant tuberculosis in high-burden countries comparing routine drug susceptibility testing with whole-genome sequencing: a multicentre cohort study. Lancet Microbe, The, 2021, 2, e320-e330.	7.3	19
8	Drug Susceptibility Distributions of Mycobacterium chimaera and Other Nontuberculous Mycobacteria. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	8
9	Novel fidaxomicin antibiotics through site-selective catalysis. Communications Chemistry, 2021, 4, .	4.5	7
10	Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 676456.	3.9	7
11	Semisynthetic Analogs of the Antibiotic Fidaxomicinâ€"Design, Synthesis, and Biological Evaluation. ACS Medicinal Chemistry Letters, 2020, 11, 2414-2420.	2.8	12
12	Synthesis and Biological Evaluation of Iodinated Fidaxomicin Antibiotics. Helvetica Chimica Acta, 2020, 103, e2000130.	1.6	10
13	Natural Polymorphisms in Mycobacterium tuberculosis Conferring Resistance to Delamanid in Drug-Naive Patients. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	12
14	KatG as Counterselection Marker for Nontuberculous Mycobacteria. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	6
15	Identification of novel scaffolds targeting Mycobacterium tuberculosis. Journal of Molecular Medicine, 2019, 97, 1601-1613.	3.9	18
16	Whole-Genome Sequencing for Drug Resistance Profile Prediction in <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	59
17	BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathogens, 2019, 15, e1007866.	4.7	38
18	Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG. Molecular Microbiology, 2019, 111, 1263-1282.	2.5	17

#	Article	IF	CITATIONS
19	Molecular Mechanisms of Intrinsic Streptomycin Resistance in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	43
20	The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Frontiers in Microbiology, 2018, 9, 2179.	3.5	155
21	A uniform cloning platform for mycobacterial genetics and protein production. Scientific Reports, 2018, 8, 9539.	3.3	17
22	Chloroquine enhances the antimycobacterial activity of isoniazid and pyrazinamide by reversing inflammation-induced macrophage efflux. International Journal of Antimicrobial Agents, 2017, 50, 55-62.	2.5	15
23	Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes. Journal of Antimicrobial Chemotherapy, 2017, 72, 2191-2200.	3.0	55
24	Intrinsic rifamycin resistance of <i>Mycobacterium abscessus </i> is mediated by ADP-ribosyltransferase MAB_0591. Journal of Antimicrobial Chemotherapy, 2017, 72, 376-384.	3.0	101
25	Effect of \hat{I}^2 -lactamase production and \hat{I}^2 -lactam instability on MIC testing results for Mycobacterium abscessus. Journal of Antimicrobial Chemotherapy, 2017, 72, 3070-3078.	3.0	38
26	TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Frontiers in Immunology, 2017, 8, 1203.	4.8	44
27	Lipoprotein Glycosylation by Protein-O-Mannosyltransferase (MAB_1122c) Contributes to Low Cell Envelope Permeability and Antibiotic Resistance of Mycobacterium abscessus. Frontiers in Microbiology, 2017, 8, 2123.	3.5	24
28	Lipase Processing of Complex Lipid Antigens. Cell Chemical Biology, 2016, 23, 1044-1046.	5.2	4
29	<i>Mycobacterium tuberculosis</i> lipoproteins in virulence and immunity – fighting with a doubleâ€edged sword. FEBS Letters, 2016, 590, 3800-3819.	2.8	47
30	Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Tuberculosis, 2016, 96, 44-57.	1.9	37
31	Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine, 2015, 33, 1353-1359.	3.8	45
32	Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCR \hat{l}^2 repertoire. Nature Communications, 2014, 5, 3866.	12.8	267
33	Discovery of the first potent and selective Mycobacterium tuberculosis Zmp1 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2508-2511.	2.2	22
34	BCG \hat{l} "zmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine, 2014, 32, 779-784.	3.8	17
35	Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by Apolipoprotein N-Acyltransferase BCG_2070c. BMC Microbiology, 2013, 13, 223.	3.3	32
36	Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Vaccine, 2013, 31, 1057-1064.	3.8	19

#	Article	IF	Citations
37	Phenylethyl Butyrate Enhances the Potency of Second-Line Drugs against Clinical Isolates of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 1142-1145.	3.2	17
38	Functional Analyses of Mycobacterial Lipoprotein Diacylglyceryl Transferase and Comparative Secretome Analysis of a Mycobacterial <i>lgt</i> Mutant. Journal of Bacteriology, 2012, 194, 3938-3949.	2.2	30
39	Functional characterization of the <i>Mycobacterium tuberculosis</i> zinc metallopeptidase Zmp1 and identification of potential substrates. Biological Chemistry, 2012, 393, 631-640.	2.5	24
40	A \hat{I}^2 -Lactamase Based Reporter System for ESX Dependent Protein Translocation in Mycobacteria. PLoS ONE, 2012, 7, e35453.	2.5	3
41	Dissecting the complete lipoprotein biogenesis pathway in <i>Streptomyces scabies</i> Microbiology, 2011, 80, 1395-1412.	2.5	42
42	Crystal Structure of Mycobacterium tuberculosis Zinc-dependent Metalloprotease-1 (Zmp1), a Metalloprotease Involved in Pathogenicity. Journal of Biological Chemistry, 2011, 286, 32475-32482.	3.4	31
43	Relief from Zmp1-Mediated Arrest of Phagosome Maturation Is Associated with Facilitated Presentation and Enhanced Immunogenicity of Mycobacterial Antigens. Vaccine Journal, 2011, 18, 907-913.	3.1	54
44	The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Research, 2011, 39, 7316-7328.	14.5	40
45	Deletion of <i>dop</i> in <i>Mycobacterium smegmatis</i> abolishes pupylation of protein substrates <i>in vivo</i> . Molecular Microbiology, 2010, 75, 744-754.	2.5	65
46	Directed mutagenesis of <i>Mycobacterium smegmatis</i> 16S rRNA to reconstruct the <i>in vivo</i> evolution of aminoglycoside resistance in <i>Mycobacterium tuberculosis</i> Molecular Microbiology, 2010, 77, 830-840.	2.5	97
47	Dop functions as a depupylase in the prokaryotic ubiquitinâ€like modification pathway. EMBO Reports, 2010, 11, 791-797.	4.5	90
48	Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20441-20446.	7.1	87
49	Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF. Biochemical and Biophysical Research Communications, 2010, 391, 679-684.	2.1	16
50	Identification of Apolipoprotein N-Acyltransferase (Lnt) in Mycobacteria. Journal of Biological Chemistry, 2009, 284, 27146-27156.	3.4	64
51	Involvement of CD252 (CD134L) and IL-2 in the Expression of Cytotoxic Proteins in Bacterial- or Viral-Activated Human T Cells. Journal of Immunology, 2009, 182, 7569-7579.	0.8	9
52	Characterization of the Mycobacterial NER System Reveals Novel Functions of the <i>uvrD1 < /i> Helicase. Journal of Bacteriology, 2009, 191, 555-562.</i>	2.2	34
53	Polyphosphates from <i>Mycobacteriumâ€fbovis</i> àê" potent inhibitors of classâ€fIII adenylate cyclases. FEBS Journal, 2009, 276, 1094-1103.	4.7	8
54	Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant. BMC Microbiology, 2008, 8, 120.	3.3	31

#	Article	IF	Citations
55	A synthetic mammalian gene circuit reveals antituberculosis compounds. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9994-9998.	7.1	153
56	Mycobacterium tuberculosis Prevents Inflammasome Activation. Cell Host and Microbe, 2008, 3, 224-232.	11.0	345
57	A Mycobacterial smc Null Mutant Is Proficient in DNA Repair and Long-Term Survival. Journal of Bacteriology, 2008, 190, 452-456.	2.2	17
58	LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology (United Kingdom), 2008, 154, 2991-3001.	1.8	28
59	Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant. Nature Precedings, 2008, , .	0.1	0
60	Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria. Nucleic Acids Research, 2007, 35, 6086-6093.	14.5	84
61	Lipoprotein synthesis in mycobacteria. Microbiology (United Kingdom), 2007, 153, 652-658.	1.8	90
62	Breaking down the wall: Fractionation of mycobacteria. Journal of Microbiological Methods, 2007, 68, 32-39.	1.6	98
63	Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264. International Journal of Medical Microbiology, 2006, 296, 563-566.	3.6	13
64	Binding of Neomycin-Class Aminoglycoside Antibiotics to Mutant Ribosomes with Alterations in the A Site of 16S rRNA. Antimicrobial Agents and Chemotherapy, 2006, 50, 1489-1496.	3.2	63
65	Interaction of Rv1625c, a mycobacterial class Illa adenylyl cyclase, with a mammalian congener. Molecular Microbiology, 2005, 57, 667-677.	2.5	14
66	Lipoprotein processing is required for virulence of Mycobacterium tuberculosisâ€. Molecular Microbiology, 2004, 52, 1543-1552.	2.5	132
67	Lack of mismatch correction facilitates genome evolution in mycobacteria. Molecular Microbiology, 2004, 53, 1601-1609.	2.5	70
68	The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Molecular Microbiology, 2003, 50, 1031-1042.	2.5	141
69	A recA deletion mutant of Mycobacterium bovis BCG confers protection equivalent to that of wild-type BCG but shows increased genetic stability. Vaccine, 2003, 21, 4124-4127.	3.8	10
70	Fitness Cost of Chromosomal Drug Resistance-Conferring Mutations. Antimicrobial Agents and Chemotherapy, 2002, 46, 1204-1211.	3.2	205
71	The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Molecular Microbiology, 2002, 46, 191-201.	2.5	96
72	DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Molecular Microbiology, 2002, 46, 791-800.	2.5	66

#	Article	IF	CITATIONS
73	Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Reports, 2001, 2, 318-323.	4.5	132
74	Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. International Journal of Medical Microbiology, 2001, 290, 669-675.	3.6	62
75	Gene Replacement in Mycobacterium tuberculosis and Mycobacterium bovis BCG Using rpsL ⁺ as a Dominant Negative Selectable Marker., 2001, 54, 093-104.		13
76	Mycobacterium bovis BCG recADeletion Mutant Shows Increased Susceptibility to DNA-Damaging Agents but Wild-Type Survival in a Mouse Infection Model. Infection and Immunity, 2001, 69, 3562-3568.	2.2	57
77	Mechanisms of Streptomycin Resistance: Selection of Mutations in the 16S rRNA Gene Conferring Resistance. Antimicrobial Agents and Chemotherapy, 2001, 45, 2877-2884.	3.2	156
78	Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiology Letters, 2000, 193, 19-23.	1.8	54
79	In Vivo Splicing and Functional Characterization ofMycobacterium leprae RecA. Journal of Bacteriology, 2000, 182, 3590-3592.	2.2	9
80	Mycobacteria: Genetics of Resistance and Implications for Treatment. Chemotherapy, 1999, 45, 95-108.	1.6	30
81	RecA-Mediated Gene Conversion and Aminoglycoside Resistance in Strains Heterozygous for rRNA. Antimicrobial Agents and Chemotherapy, 1999, 43, 447-453.	3.2	62
82	Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nature Medicine, 1998, 4, 1343-1344.	30.7	128
83	Investigation of mycobacterial recA function: protein introns in the RecA of pathogenic mycobacteria do not affect competency for homologous recombination. Molecular Microbiology, 1998, 29, 1203-1214.	2.5	39
84	A Single 16S Ribosomal RNA Substitution Is Responsible for Resistance to Amikacin and Other 2â€Deoxystreptamine Aminoglycosides in <i>Mycobacterium abscessus</i> hournal of Infectious Diseases, 1998, 177, 1573-1581.	4.0	210
85	Gene Replacement in Mycobacterium smegmatis Using a Dominant Negative Selectable Marker. , 1998, 101, 207-216.		4
86	Inteins in mycobacterial GyrA are a taxonomic character. Microbiology (United Kingdom), 1998, 144, 589-591.	1.8	15
87	The role of ribosomal RNAs in macrolide resistance. Molecular Microbiology, 1997, 26, 469-480.	2.5	75
88	Ribosomal drug resistance in mycobacteria. Research in Microbiology, 1996, 147, 59-67.	2.1	21
89	Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Molecular Microbiology, 1996, 22, 841-848.	2.5	101
90	rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Molecular Microbiology, 1995, 16, 991-1000.	2.5	152