
## **Raul Estevez**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7937346/publications.pdf Version: 2024-02-01



PALL FSTEVEZ

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca2+-induced proteostasis disease stress. Cellular and Molecular Life Sciences, 2022, 79, 167.                               | 5.4 | 6         |
| 2  | GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts. International<br>Journal of Molecular Sciences, 2022, 23, 5528.                                                            | 4.1 | 3         |
| 3  | Split-Tobacco Etch Virus (Split-TEV) Method in G Protein-Coupled Receptor Interacting Proteins.<br>Methods in Molecular Biology, 2021, 2268, 223-232.                                                      | 0.9 | 3         |
| 4  | Identification of the GlialCAM interactome: the G protein-coupled receptors GPRC5B and GPR37L1<br>modulate megalencephalic leukoencephalopathy proteins. Human Molecular Genetics, 2021, 30,<br>1649-1665. | 2.9 | 12        |
| 5  | Muscarinic acetylcholine receptor M1 mutations causing neurodevelopmental disorder and epilepsy.<br>Human Mutation, 2021, 42, 1215-1220.                                                                   | 2.5 | 3         |
| 6  | Unique variants in CLCN3, encoding an endosomal anion/proton exchanger, underlie a spectrum of neurodevelopmental disorders. American Journal of Human Genetics, 2021, 108, 1450-1465.                     | 6.2 | 16        |
| 7  | HepaCAM controls astrocyte self-organization and coupling. Neuron, 2021, 109, 2427-2442.e10.                                                                                                               | 8.1 | 52        |
| 8  | Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple<br>subcellular locations. Scientific Reports, 2021, 11, 18435.                                        | 3.3 | 8         |
| 9  | Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. ELife, 2021, 10, .                                                                        | 6.0 | 19        |
| 10 | Dynamic expression of homeostatic ion channels in differentiated cortical astrocytes in vitro.<br>Pflugers Archiv European Journal of Physiology, 2021, 474, 243.                                          | 2.8 | 0         |
| 11 | Mechanisms of Dominance of MLC2B Mutations in Glialcam, a Regulatory Subunit of the ClC-2<br>Chloride Channel. Biophysical Journal, 2020, 118, 266a-267a.                                                  | 0.5 | 0         |
| 12 | Cerebellar Astrocyte Transduction as Gene Therapy for Megalencephalic Leukoencephalopathy.<br>Neurotherapeutics, 2020, 17, 2041-2053.                                                                      | 4.4 | 7         |
| 13 | Structural basis for the dominant or recessive character of GLIALCAM mutations found in leukodystrophies. Human Molecular Genetics, 2020, 29, 1107-1120.                                                   | 2.9 | 10        |
| 14 | Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy.<br>Frontiers in Cellular Neuroscience, 2020, 14, 627887.                                                  | 3.7 | 14        |
| 15 | Drosophila ClCâ€e is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia, 2019, 67, 2374-2398.                                                             | 4.9 | 21        |
| 16 | Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Structure and Function, 2019, 224, 1267-1278.              | 2.3 | 22        |
| 17 | Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte<br>Activation in Response to Inflammatory Signals. Molecular Neurobiology, 2019, 56, 8237-8254.          | 4.0 | 19        |
| 18 | Role of zebrafish ClCâ€K/barttin channels in apical kidney chloride reabsorption. Journal of Physiology,<br>2019, 597, 3969-3983.                                                                          | 2.9 | 8         |

RAUL ESTEVEZ

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chloride Channels in Astrocytes: Structure, Roles in Brain Homeostasis and Implications in Disease.<br>International Journal of Molecular Sciences, 2019, 20, 1034.                                          | 4.1  | 28        |
| 20 | The LRRC8-mediated volume-regulated anion channel is altered in glaucoma. Scientific Reports, 2019, 9, 5392.                                                                                                 | 3.3  | 7         |
| 21 | Comparison of zebrafish and mice knockouts for Megalencephalic Leukoencephalopathy proteins<br>indicates that GlialCAM/MLC1 forms a functional unit. Orphanet Journal of Rare Diseases, 2019, 14, 268.       | 2.7  | 9         |
| 22 | <i>CLCN1</i> Myotonia congenita mutation with a variable pattern of inheritance suggests a novel mechanism of dominant myotonia. Muscle and Nerve, 2018, 58, 157-160.                                        | 2.2  | 3         |
| 23 | Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective.<br>European Journal of Medical Genetics, 2018, 61, 50-60.                                                  | 1.3  | 19        |
| 24 | GlialCAM/MLC1 modulates LRRC8/VRAC currents in an indirect manner: Implications for megalencephalic leukoencephalopathy. Neurobiology of Disease, 2018, 119, 88-99.                                          | 4.4  | 34        |
| 25 | Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats. International<br>Journal of Molecular Sciences, 2018, 19, 719.                                                                 | 4.1  | 12        |
| 26 | Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight, 2018, 3, .                                                                      | 5.0  | 29        |
| 27 | Cisplatin activates volume sensitive LRRC8 channel mediated currents in <i>Xenopus</i> oocytes.<br>Channels, 2017, 11, 254-260.                                                                              | 2.8  | 17        |
| 28 | Depolarization causes the formation of a ternary complex between GlialCAM, MLC1 and ClC-2 in astrocytes: implications in megalencephalic leukoencephalopathy. Human Molecular Genetics, 2017, 26, 2436-2450. | 2.9  | 33        |
| 29 | Novel Properties of LRRC8-Mediated VRAC Currents. Biophysical Journal, 2017, 112, 416a-417a.                                                                                                                 | 0.5  | 1         |
| 30 | Leukoencephalopathy ausing <i>CLCN2</i> mutations are associated with impaired Cl <sup>â^'</sup><br>channel function and trafficking. Journal of Physiology, 2017, 595, 6993-7008.                           | 2.9  | 33        |
| 31 | Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophysical<br>Journal, 2016, 111, 1429-1443.                                                                            | 0.5  | 94        |
| 32 | Identification and Functional Characterization of <i>CLCN1</i> Mutations Found in Nondystrophic Myotonia Patients. Human Mutation, 2016, 37, 74-83.                                                          | 2.5  | 23        |
| 33 | Structural determinants of interaction, trafficking and function in the ClCâ€2/MLC1 subunit GlialCAM involved in leukodystrophy. Journal of Physiology, 2015, 593, 4165-4180.                                | 2.9  | 19        |
| 34 | Regulatory–auxiliary subunits of CLC chloride channel–transport proteins. Journal of Physiology,<br>2015, 593, 4111-4127.                                                                                    | 2.9  | 17        |
| 35 | Identification and characterization of the zebrafish CIC-2 chloride channel orthologs. Pflugers<br>Archiv European Journal of Physiology, 2015, 467, 1769-1781.                                              | 2.8  | 17        |
| 36 | Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nature Communications, 2014, 5, 3475.                                                      | 12.8 | 92        |

RAUL ESTEVEZ

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | GlialCAM, a CLC-2 Cl - Channel Subunit, Activates the Slow Gate of CLC Chloride Channels. Biophysical<br>Journal, 2014, 107, 1105-1116.                                                                                     | 0.5  | 32        |
| 38 | Functional Analyses of Mutations in <i>HEPACAM</i> Causing Megalencephalic Leukoencephalopathy.<br>Human Mutation, 2014, 35, 1175-1178.                                                                                     | 2.5  | 16        |
| 39 | Megalencephalic leukoencephalopathy with subcortical cysts protein 1 regulates glial surface<br>localization of GLIALCAM from fish to humans. Human Molecular Genetics, 2014, 23, 5069-5086.                                | 2.9  | 34        |
| 40 | Expanding the spectrum of megalencephalic leukoencephalopathy with subcortical cysts in two patients with GLIALCAM mutations. Neurogenetics, 2014, 15, 41-48.                                                               | 1.4  | 22        |
| 41 | Reduced Current Density and Surface Expression of a CLCN1 Mutation Causing Dominant or Recessive<br>Myotonia in Costa Rica. Biophysical Journal, 2014, 106, 147a.                                                           | 0.5  | 0         |
| 42 | GLIALCAM, A Glial Cell Adhesion Molecule Implicated in Neurological Disease. Advances in Neurobiology, 2014, 8, 47-59.                                                                                                      | 1.8  | 9         |
| 43 | Glialcam Affects CLC-Chloride Channels by Activating the Slow Gate. Biophysical Journal, 2013, 104, 628a.                                                                                                                   | 0.5  | 0         |
| 44 | Insights into MLC pathogenesis: GlialCAM is an MLC1 chaperone required for proper activation of volume-regulated anion currents. Human Molecular Genetics, 2013, 22, 4405-4416.                                             | 2.9  | 50        |
| 45 | ClialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Clâ^ Channel Auxiliary Subunit.<br>Neuron, 2012, 73, 951-961.                                                                                          | 8.1  | 118       |
| 46 | Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurology, The, 2012, 11, 973-985.                                      | 10.2 | 131       |
| 47 | A modification of the split-tobacco etch virus method for monitoring interactions between membrane proteins in mammalian cells. Analytical Biochemistry, 2012, 423, 109-118.                                                | 2.4  | 8         |
| 48 | Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 2011, 20, 3266-3277.                                                           | 2.9  | 80        |
| 49 | Mutant GlialCAM Causes Megalencephalic Leukoencephalopathy with Subcortical Cysts, Benign<br>Familial Macrocephaly, and Macrocephaly with Retardation and Autism. American Journal of Human<br>Genetics, 2011, 88, 422-432. | 6.2  | 148       |
| 50 | Knockdown of MLC1 in primary astrocytes causes cell vacuolation: A MLC disease cell model.<br>Neurobiology of Disease, 2011, 43, 228-238.                                                                                   | 4.4  | 60        |
| 51 | Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain, 2011, 134, 3342-3354.                                                                                        | 7.6  | 63        |
| 52 | Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects. Human Molecular Genetics, 2008, 17, 3728-3739.                                               | 2.9  | 60        |
| 53 | Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix. Biochemical Journal, 2007, 403, 79-87.                                               | 3.7  | 23        |
| 54 | Expression patterns of MLC1 protein in the central and peripheral nervous systems. Neurobiology of Disease, 2007, 26, 532-545.                                                                                              | 4.4  | 48        |

RAUL ESTEVEZ

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | MLC1 is associated with the Dystrophin-Glycoprotein Complex at astrocytic endfeet. Acta<br>Neuropathologica, 2007, 114, 403-410.                                                                                                                                 | 7.7  | 49        |
| 56 | Vacuolating megalencephalic leukoencephalopathy with subcortical cysts: functional studies of novel variants inMLC1. Human Mutation, 2006, 27, 292-292.                                                                                                          | 2.5  | 25        |
| 57 | Identification of LAT4, a Novel Amino Acid Transporter with System L Activity. Journal of Biological<br>Chemistry, 2005, 280, 12002-12011.                                                                                                                       | 3.4  | 216       |
| 58 | Localization and functional analyses of the MLC1 protein involved in megalencephalic<br>leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 2004, 13, 2581-2594.                                                                               | 2.9  | 86        |
| 59 | Functional and structural conservation of CBS domains from CLC chloride channels. Journal of Physiology, 2004, 557, 363-378.                                                                                                                                     | 2.9  | 131       |
| 60 | Lysinuric protein intolerance: mechanisms of pathophysiology. Molecular Genetics and Metabolism, 2004, 81, 27-37.                                                                                                                                                | 1.1  | 66        |
| 61 | Conservation of Chloride Channel Structure Revealed by an Inhibitor Binding Site in ClC-1. Neuron, 2003, 38, 47-59.                                                                                                                                              | 8.1  | 161       |
| 62 | CLC chloride channels: correlating structure with function. Current Opinion in Structural Biology, 2002, 12, 531-539.                                                                                                                                            | 5.7  | 86        |
| 63 | Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature, 2001, 414, 558-561.                                                                                                                                    | 27.8 | 538       |
| 64 | Identification of a Membrane Protein, LAT-2, That Co-expresses with 4F2 Heavy Chain, an L-type Amino<br>Acid Transport Activity with Broad Specificity for Small and Large Zwitterionic Amino Acids. Journal<br>of Biological Chemistry, 1999, 274, 19738-19744. | 3.4  | 356       |
| 65 | Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nature<br>Genetics, 1999, 23, 52-57.                                                                                                                                   | 21.4 | 280       |
| 66 | Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nature Genetics, 1999, 21, 293-296.                                                                                                                                       | 21.4 | 286       |
| 67 | Cystinuria calls for heteromultimeric amino acid transporters. Current Opinion in Cell Biology, 1998,<br>10, 455-461.                                                                                                                                            | 5.4  | 31        |
| 68 | Identification and Characterization of a Membrane Protein (y+L Amino Acid Transporter-1) That<br>Associates with 4F2hc to Encode the Amino Acid Transport Activity y+L. Journal of Biological<br>Chemistry, 1998, 273, 32437-32445.                              | 3.4  | 304       |
| 69 | Molecular Biology of Mammalian Plasma Membrane Amino Acid Transporters. Physiological Reviews,<br>1998, 78, 969-1054.                                                                                                                                            | 28.8 | 778       |
| 70 | The amino acid transport system y <sup>+</sup> L/4F2hc is a heteromultimeric complex. FASEB Journal, 1998, 12, 1319-1329.                                                                                                                                        | 0.5  | 87        |
| 71 | An Intracellular Trafficking Defect in Type I Cystinuria rBAT Mutants M467T and M467K. Journal of<br>Biological Chemistry, 1997, 272, 9543-9549.                                                                                                                 | 3.4  | 82        |
| 72 | Obligatory Amino Acid Exchange via Systems bo,+-like and y+L-like. Journal of Biological Chemistry, 1996, 271, 17761-17770.                                                                                                                                      | 3.4  | 158       |