Ning Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7937194/publications.pdf

Version: 2024-02-01

170	7,943	41 h-index	83
papers	citations		g-index
175	175	175	6206
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Score, Rank, and Decision-Level Fusion Strategies of Multicode Electromyogram-Based Verification and Identification Biometrics. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1068-1079.	6.3	9
2	Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 85-95.	4.9	18
3	Differential regional pectoralis major activation indicates functional diversity in healthy females. Journal of Biomechanics, 2022, 133, 110966.	2.1	1
4	Pseudo-online detection and classification for upper-limb movements. Journal of Neural Engineering, 2022, 19, 036042.	3 . 5	5
5	Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in the sensorimotor area?. Journal of Neural Engineering, 2021, 18, 035001.	3.5	11
6	Standard bipolar surface EMG estimations mischaracterize pectoralis major activity in commonly performed tasks. Journal of Electromyography and Kinesiology, 2021, 56, 102509.	1.7	12
7	Iridoid compounds from the aerial parts of <i>Swertia mussotii</i> Franch. with cytotoxic activity. Natural Product Research, 2021, 35, 1544-1549.	1.8	3
8	Performance Optimization of Surface Electromyography Based Biometric Sensing System for Both Verification and Identification. IEEE Sensors Journal, 2021, 21, 21718-21729.	4.7	19
9	Effect of Competing Stimuli for Steady-State Visually Evoked Potential and Steady-State Motion Visually Evoked Potential. IEEE Access, 2021, 9, 129820-129829.	4.2	2
10	Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals. Journal of Neural Engineering, 2021, 18, 026027.	3 . 5	26
11	Does Inter-Stimulus Distance Influence the Decoding Performance of SSVEP and SSMVEP BCI?. , 2021, , .		3
12	Neural control of the healthy pectoralis major from low-to-moderate isometric contractions. Journal of Neurophysiology, 2021, 126, 213-226.	1.8	6
13	Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis. Sensors, 2021, 21, 5269.	3 . 8	2
14	MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning. Journal of Neural Engineering, 2021, 18, 0460d3.	3. 5	25
15	Movement related EEG signatures associated with freezing of gait in Parkinson's disease: an integrative analysis. Brain Communications, 2021, 3, fcab277.	3.3	5
16	Asynchronous SSMVEP BCI and Influence of Dynamic Background in Augmented Reality. , 2021, , .		1
17	Dihydroartemisinin regulates the immune system by promotion of CD8+ T lymphocytes and suppression of B cell responses. Science China Life Sciences, 2020, 63, 737-749.	4.9	33
18	Mirror Visual Feedback Combining Vibrotactile Stimulation Promotes Embodiment Perception: An Electroencephalogram (EEG) Pilot Study. Frontiers in Bioengineering and Biotechnology, 2020, 8, 553270.	4.1	12

#	Article	IF	Citations
19	Movement Related Cortical Potentials in Parkinson's Disease Patients with Freezing of Gait*. , 2020, 2020, 2857-2860.		1
20	Reduce brain computer interface inefficiency by combining sensory motor rhythm and movement-related cortical potential features. Journal of Neural Engineering, 2020, 17, 035003.	3.5	21
21	Linear regression with frequency division technique for robust simultaneous and proportional myoelectric control during medium and high contraction-level variation. Biomedical Signal Processing and Control, 2020, 61, 101984.	5.7	11
22	Biometric From Surface Electromyogram (sEMG): Feasibility of User Verification and Identification Based on Gesture Recognition. Frontiers in Bioengineering and Biotechnology, 2020, 8, 58.	4.1	37
23	Comparing user-dependent and user-independent training of CNN for SSVEP BCI. Journal of Neural Engineering, 2020, 17, 026028.	3.5	76
24	Efficient correction of armband rotation for myoelectric-based gesture control interface. Journal of Neural Engineering, 2020, 17, 036025.	3.5	13
25	Scale-Free Analysis of Intraoperative ECoG During Awake Craniotomy for Glioma. Frontiers in Oncology, 2020, 10, 625474.	2.8	6
26	Position Identification for Robust Myoelectric Control Against Electrode Shift. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3121-3128.	4.9	13
27	Effect of Guided Tactical Breathing with Biofeedback on Acute Stress Attenuation and Marksmanship Performance of Novice Shooters. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 641-645.	0.3	2
28	Sensory Stimulation Training for BCI System Based on Somatosensory Attentional Orientation. IEEE Transactions on Biomedical Engineering, 2019, 66, 640-646.	4.2	24
29	Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 156-163.	6.3	21
30	Fast Detection of Acute Cognitive Stress Measurement via Heart Rate Variability. , 2019, , .		0
31	Online Adaptive Synchronous BCI System with Attention Variations. Springer Briefs in Electrical and Computer Engineering, 2019, , 31-41.	0.5	4
32	Fusing Frontal and Occipital EEG Features to Detect "Brain Switch―by Utilizing Convolutional Neural Network. IEEE Access, 2019, 7, 82817-82825.	4.2	6
33	Tim-3 signaling blockade with $\hat{l}\pm$ -lactose induces compensatory TIGIT expression in Plasmodium berghei ANKA-infected mice. Parasites and Vectors, 2019, 12, 534.	2.5	14
34	A Convolutional Neural Network for Enhancing the Detection of SSVEP in the Presence of Competing Stimuli., 2019, 2019, 6323-6326.		7
35	The Fâ€box protein HAWAIIAN SKIRT is required for mimicry targetâ€induced microRNA degradation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2019, 61, 1121-1127.	8.5	21
36	A Novel Framework Based on Position Verification for Robust Myoelectric Control Against Sensor Shift. IEEE Sensors Journal, 2019, 19, 9859-9868.	4.7	14

#	Article	IF	CITATIONS
37	User-Specific Channel Selection Method to Improve SSVEP BCI Decoding Robustness Against Variable Inter-Stimulus Distance. , 2019, , .		8
38	Wideband Time Delay Signature-Suppressed Chaos Generation Using Self-Phase-Modulated Feedback Semiconductor Laser Cascaded With Dispersive Component. Journal of Lightwave Technology, 2019, 37, 5132-5139.	4.6	38
39	ROP9, MIC3, and SAG2 are heparin-binding proteins in Toxoplasma gondii and involved in host cell attachment and invasion. Acta Tropica, 2019, 192, 22-29.	2.0	7
40	A Convolutional Neural Network for the Detection of Asynchronous Steady State Motion Visual Evoked Potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1303-1311.	4.9	37
41	Continuous 2D control via state-machine triggered by endogenous sensory discrimination and a fast brain switch. Journal of Neural Engineering, 2019, 16, 056001.	3.5	13
42	Real-Time Detection of Acute Cognitive Stress Using a Convolutional Neural Network From Electrocardiographic Signal. IEEE Access, 2019, 7, 42710-42717.	4.2	54
43	Neural variability quenching during decision-making: Neural individuality and its prestimulus complexity. Neurolmage, 2019, 192, 1-14.	4.2	28
44	Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 47.	4.6	65
45	Age-Related Changes in Vibro-Tactile EEG Response and Its Implications in BCI Applications: A Comparison Between Older and Younger Populations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 603-610.	4.9	25
46	Classification of Movement Preparation Between Attended and Distracted Self-Paced Motor Tasks. IEEE Transactions on Biomedical Engineering, 2019, 66, 3060-3071.	4.2	6
47	Origin and evolution of the octoploid strawberry genome. Nature Genetics, 2019, 51, 541-547.	21.4	469
48	Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience, 2019, 8, .	6.4	167
49	Framework Cu-doped boron nitride nanobelts with enhanced internal electric field for effective Fenton-like removal of organic pollutants. Journal of Materials Chemistry A, 2019, 7, 6946-6956.	10.3	54
50	Surface Potential Phase Discrimination of Bereitschaftspotentials., 2019,,.		0
51	A Hybrid BCI Approach to Detect Brain Switch in Action Observation by Utilizing Convolution Neural Network. , 2019, , .		1
52	Convolution Neural Network for EMG-Based Finger Gesture Classification for Novel and Trained Gestures*., 2019, , .		0
53	A Reference-based Source Extraction Algorithm to Extract Movement Related Cortical Potentials for Brain-Computer Interface Applications., 2019,,.		1
54	User-Independent SSVEP BCI Using Complex FFT Features and CNN Classification. , 2019, , .		10

#	Article	IF	Citations
55	Optimizing Probability Threshold of Convolution Neural Network to Improve HRV-based Acute Stress Detection Performance., 2019, 2019, 5318-5321.		1
56	Construction of a genetic linkage map of <i>Lentinula edodes</i> based on SSR, SRAP and TRAP markers. Breeding Science, 2019, 69, 585-591.	1.9	6
57	Programmed death ligand $\hat{\mathbf{e}}$ is associated with tumor infiltrating lymphocytes and poorer survival in urothelial cell carcinoma of the bladder. Cancer Science, 2019, 110, 489-498.	3.9	66
58	Brain state–dependent stimulation boosts functional recovery following stroke. Annals of Neurology, 2019, 85, 84-95.	5. 3	41
59	Wrist and Finger Gesture Recognition With Single-Element Ultrasound Signals: A Comparison With Single-Channel Surface Electromyogram. IEEE Transactions on Biomedical Engineering, 2019, 66, 1277-1284.	4.2	51
60	Spatial Information Enhances Myoelectric Control Performance With Only Two Channels. IEEE Transactions on Industrial Informatics, 2019, 15, 1226-1233.	11.3	28
61	Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback. Optics Express, 2019, 27, 5065.	3.4	16
62	Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback. Optics Express, 2019, 27, 12336.	3.4	43
63	Brain State-Dependent Peripheral Nerve Stimulation for Plasticity Induction in Stroke Patients. Biosystems and Biorobotics, 2019, , 1066-1070.	0.3	0
64	Performance of Brain–Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 60-68.	4.9	12
65	Online mapping of EMG signals into kinematics by autoencoding. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 21.	4.6	68
66	Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization. Journal of Neural Engineering, 2018, 15, 026017.	3.5	51
67	Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation. IEEE Transactions on Biomedical Engineering, 2018, 65, 1689-1695.	4.2	17
68	High-throughput determination of the antigen specificities of T cell receptors in single cells. Nature Biotechnology, 2018, 36, 1156-1159.	17.5	144
69	Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovascular Diabetology, 2018, 17, 160.	6.8	41
70	Evolution and Expression Divergence of the CYP78A Subfamily Genes in Soybean. Genes, 2018, 9, 611.	2.4	12
71	Amn1 governs post-mitotic cell separation in Saccharomyces cerevisiae. PLoS Genetics, 2018, 14, e1007691.	3.5	15
72	A Multi-Class BCI Based on Somatosensory Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1508-1515.	4.9	21

#	Article	IF	CITATIONS
73	A dual-reaction-center Fenton-like process on –Cî€,N–Cu linkage between copper oxides and defect-containing g-C ₃ N ₄ for efficient removal of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 17819-17828.	10.3	73
74	Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients. Frontiers in Neuroscience, 2018, 12, 93.	2.8	55
75	Gut microbiota correlates with fiber and apparent nutrients digestion in goose. Poultry Science, 2018, 97, 3899-3909.	3.4	23
76	Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta, 2018, 248, 1487-1503.	3.2	80
77	Camera-Based Mirror Visual Feedback: Potential to Improve Motor Preparation in Stroke Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1897-1905.	4.9	16
78	A Multi-Class Tactile Brain–Computer Interface Based on Stimulus-Induced Oscillatory Dynamics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 3-10.	4.9	20
79	Associative Plasticity Induced by a Brain–Computer Interface Based on Movement-Related Cortical Potentials. , 2018, , 669-684.		2
80	Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator. Optics Letters, 2018, 43, 5359.	3.3	44
81	Wideband Complexity-Enhanced Optical Chaos Generation and its Application for Fast Random Bit Generation. , $2018, , .$		0
82	A BCI System Based on Somatosensory Attentional Orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 81-90.	4.9	29
83	Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 254-264.	4.9	37
84	Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nature Biomedical Engineering, 2017, 1 , .	22.5	245
85	Classification of EEG signals to identify variations in attention during motor task execution. Journal of Neuroscience Methods, 2017, 284, 27-34.	2.5	45
86	A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1674-1682.	4.9	38
87	Non-invasive brain stimulation interventions for management of chronic central neuropathic pain: a scoping review protocol. BMJ Open, 2017, 7, e016002.	1.9	9
88	Effects of Electrode Configuration on Pattern Recognition Based Finger Movement Classification. Communications in Computer and Information Science, 2017, , 117-122.	0.5	2
89	Influence of dual-tasking with different levels of attention diversion on characteristics of the movement-related cortical potential. Brain Research, 2017, 1674, 10-19.	2.2	21
90	The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Research, 2017, 1674, 91-100.	2.2	28

#	Article	IF	CITATIONS
91	Influence of Spontaneous Rhythm on Movement-Related Cortical Potential - A Preliminary Neurofeedback Study. Lecture Notes in Computer Science, 2017, , 90-98.	1.3	1
92	Transcranial direct current stimulation versus user training on improving online myoelectric control for amputees. Journal of Neural Engineering, 2017, 14, 046019.	3.5	3
93	Tactile Stimulation Training to Enhance MRCP Detection in Chronic Stroke Patients. Lecture Notes in Computer Science, 2017, , 354-363.	1.3	3
94	Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients. Clinical Neurophysiology, 2017, 128, 165-175.	1.5	13
95	Cortical oscillatory dynamics of tactile selective sensation - for a novel type of somatosensory Brain-computer Interface., 2017, 2017, 1656-1659.		0
96	Evaluating the effectiveness of different external cues on non-invasive brain-computer interfaces. , 2017, 2017, 2782-2785.		0
97	Robustness of Frequency Division Technique for Online Myoelectric Pattern Recognition against Contraction-Level Variation. Frontiers in Bioengineering and Biotechnology, 2017, 5, 3.	4.1	14
98	Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications. Frontiers in Neuroscience, 2017, 11, 356.	2.8	42
99	Common Spatial Pattern with Polarity Check for reducing delay latency in detection of MRCP based BCI system. , 2017, , .		3
100	Towards Online Functional Brain Mapping and Monitoring During Awake Craniotomy Surgery Using ECoG-Based Brain-Surgeon Interface (BSI). Springer Briefs in Electrical and Computer Engineering, 2017, , 91-96.	0.5	0
101	A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control. Frontiers in Neuroscience, 2016, 10, 114.	2.8	25
102	Motor Unit Characteristics after Targeted Muscle Reinnervation. PLoS ONE, 2016, 11, e0149772.	2.5	43
103	Comparison of EEG spatial filters for movement related cortical potential detection. , 2016, 2016, 1576-1579.		5
104	Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. Journal of Neurophysiology, 2016, 115, 1410-1421.	1.8	189
105	Endogenous sensory discrimination and selection by a fast brain switch for a high transfer rate brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 901-910.	4.9	22
106	Discriminative Manifold Learning Based Detection of Movement-Related Cortical Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 921-927.	4.9	22
107	Bayesian Filtering of Surface EMG for Accurate Simultaneous and Proportional Prosthetic Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 1333-1341.	4.9	38
108	Towards Zero Retraining for Myoelectric Control Based on Common Model Component Analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 444-454.	4.9	34

#	Article	IF	CITATIONS
109	Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 110.	4.6	77
110	Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. Journal of Neural Engineering, 2015, 12, 056003.	3.5	47
111	Influence of external cues on synchronized Brain-Computer Interface based on movement related cortical potentials., 2015,,.		3
112	Detection of movement intention from single-trial movement-related cortical potentials using random and non-random paradigms. Brain-Computer Interfaces, 2015, 2, 29-39.	1.8	12
113	User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control. Journal of Neural Engineering, 2015, 12, 046005.	3.5	126
114	Myoelectric control of artificial limb inspired by quantum information processing. Physica Scripta, 2015, 90, 035001.	2.5	3
115	Classification of motor unit activity following targeted muscle reinnervation. , 2015, , .		10
116	A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology, 2015, 126, 154-159.	1.5	112
117	Factors of Influence on the Performance of a Short-Latency Non-Invasive Brain Switch: Evidence in Healthy Individuals and Implication for Motor Function Rehabilitation. Frontiers in Neuroscience, 2015, 9, 527.	2.8	20
118	The Changing Brain: Bidirectional Learning Between Algorithm and User. Springer Briefs in Electrical and Computer Engineering, 2015, , 115-125.	0.5	0
119	Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation. Frontiers in Neuroengineering, 2014, 7, 35.	4.8	21
120	A Novel Brain-Computer Interface for Chronic Stroke Patients. Biosystems and Biorobotics, 2014, , $51-61$.	0.3	8
121	Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications. IEEE Transactions on Biomedical Engineering, 2014, 61, 288-296.	4.2	168
122	Reply from Dario Farina, Francesco Negro and Ning Jiang. Journal of Physiology, 2014, 592, 251-252.	2.9	4
123	An Accurate, Versatile, and Robust Brain Switch for Neurorehabilitation. Springer Briefs in Electrical and Computer Engineering, 2014, , 47-61.	0.5	12
124	Is Accurate Mapping of EMG Signals on Kinematics Needed for Precise Online Myoelectric Control?. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 549-558.	4.9	177
125	Extracting Signals Robust to Electrode Number and Shift for Online Simultaneous and Proportional Myoelectric Control by Factorization Algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 623-633.	4.9	145
126	Intuitive, Online, Simultaneous, and Proportional Myoelectric Control Over Two Degrees-of-Freedom in Upper Limb Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 501-510.	4.9	223

#	Article	IF	Citations
127	A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 110.	4.6	28
128	Hierarchical Bayes based Adaptive Sparsity in Gaussian Mixture Model. Pattern Recognition Letters, 2014, 49, 238-247.	4.2	0
129	Detection of Movement Intentions through a Single Channel of Electroencephalography. Biosystems and Biorobotics, 2014, , 465-472.	0.3	6
130	Self-Correcting Pattern Recognition System of Surface EMG Signals for Upper Limb Prosthesis Control. IEEE Transactions on Biomedical Engineering, 2014, 61, 1167-1176.	4.2	163
131	A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity. IEEE Transactions on Biomedical Engineering, 2014, 61, 2092-2101.	4.2	137
132	Noninvasive, Accurate Assessment of the Behavior of Representative Populations of Motor Units in Targeted Reinnervated Muscles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 810-819.	4.9	42
133	The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 797-809.	4.9	725
134	Linear and Nonlinear Regression Techniques for Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 269-279.	4.9	298
135	Detection of Movement Intention from Movement-Related Cortical Potentials with Different Paradigms. Biosystems and Biorobotics, 2014, , 237-244.	0.3	4
136	Movement Related Cortical Potentials and Sensory Motor Rhythms during Self Initiated and Cued Movements. Biosystems and Biorobotics, 2014, , 701-707.	0.3	7
137	Detection of movement-related cortical potentials based on subject-independent training. Medical and Biological Engineering and Computing, 2013, 51, 507-512.	2.8	75
138	Effect of arm position on the prediction of kinematics from EMG in amputees. Medical and Biological Engineering and Computing, 2013, 51, 143-151.	2.8	97
139	Identification of common synaptic inputs to motor neurons from the rectified electromyogram. Journal of Physiology, 2013, 591, 2403-2418.	2.9	98
140	Simultaneous and Proportional Myocontrol of Multiple Degrees of Freedom. Biosystems and Biorobotics, 2013, , 1225-1228.	0.3	0
141	Myoelectric Control of Artificial Limbs—Is There a Need to Change Focus? [In the Spotlight]. IEEE Signal Processing Magazine, 2012, 29, 152-150.	5.6	275
142	Simultaneous and proportional control of 2D wrist movements with myoelectric signals. , 2012, , .		26
143	The potential of imagination and artificial afference in stroke rehabilitation. , $2012, , .$		0
144	Real time simultaneous and proportional control of multiple degrees of freedom from surface EMG: Preliminary results on subjects with limb deficiency., 2012, 2012, 1346-9.		27

#	Article	IF	CITATIONS
145	EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 42.	4.6	152
146	Peripheral Electrical Stimulation Triggered by Self-Paced Detection of Motor Intention Enhances Motor Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 595-604.	4.9	129
147	Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training. IEEE Transactions on Biomedical Engineering, 2011, 58, 681-688.	4.2	212
148	Detection of movement intention from single-trial movement-related cortical potentials. Journal of Neural Engineering, 2011, 8, 066009.	3.5	208
149	Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 25.	4.6	131
150	Covariance and Time-Scale Methods for Blind Separation of Delayed Sources. IEEE Transactions on Biomedical Engineering, 2011, 58, 550-556.	4.2	21
151	A computational model and simulation study of the efferent activity in the brachial nerves during voluntary motor intent. Medical and Biological Engineering and Computing, 2010, 48, 67-77.	2.8	8
152	Myoelectric Control in Neurorehabilitation. Critical Reviews in Biomedical Engineering, 2010, 38, 381-391.	0.9	37
153	Multichannel surface EMG based estimation of bilateral hand kinematics during movements at multiple degrees of freedom., 2010, 2010, 6066-9.		17
154	High-density EMG E-Textile systems for the control of active prostheses. , 2010, 2010, 3591-3.		39
155	Enhanced EMG signal processing for simultaneous and proportional myoelectric control., 2009, 2009, 4335-8.		34
156	Simulation and classification of the efferent activity in brachial nerves., 2009, 2009, 4954-7.		0
157	Extracting Simultaneous and Proportional Neural Control Information for Multiple-DOF Prostheses From the Surface Electromyographic Signal. IEEE Transactions on Biomedical Engineering, 2009, 56, 1070-1080.	4.2	375
158	Improved Phoneme-Based Myoelectric Speech Recognition. IEEE Transactions on Biomedical Engineering, 2009, 56, 2016-2023.	4.2	18
159	Spectrum of the nonstationary electromyographic signal modelled with integral pulse frequency modulation and its application to estimating neural drive information. Journal of Electromyography and Kinesiology, 2009, 19, e267-e279.	1.7	5
160	Estimating forces at multiple degrees of freedom from surface EMG using non-negative matrix factorization for myoelectric control. , 2008, , .		0
161	Extracting Neural Drives from Surface EMG: A Generative Model and Simulation Studies. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4838-41.	0.5	7
162	A simulation method for the firing sequences of motor units. Journal of Electromyography and Kinesiology, 2007, 17, 527-534.	1.7	5

#	Article	IF	CITATIONS
163	Modeling of Muscle Motor Unit Innervation Process Correlation and Common Drive. IEEE Transactions on Biomedical Engineering, 2006, 53, 1605-1614.	4.2	5
164	The Motor Unit Innervation Process Correlation and Its Effects on EMG Applications. , 2005, 2005, 4239-42.		3
165	A Novel Simulation Model for the Motor Unit Innervation Process. , 2005, 2005, 2993-6.		0
166	Activation Torque Estimation of Muscles by Forward Neural Networks (Forward-MuscleNET) for sEMG-Based Control of Assistive Robots. , 0 , , .		2
167	Myoelectric control of upper limb prosthesis: current status, challenges and recent advances. Frontiers in Neuroengineering, 0, 7, .	4.8	9
168	Peripheral electrical stimulation triggered by movement related cortical potentials enhances cortical excitability. Frontiers in Computational Neuroscience, 0, 5, .	2.1	0
169	EMG-based Simultaneous and Proportional Estimation of Wrist Kinematics and its Application in Intuitive Myoelectric Control for Unilateral transradial Amputees. Frontiers in Computational Neuroscience, 0, 5, .	2.1	0
170	Analysis of the Relationship Between Motor Imagery and Age-Related Fatigue for CNN Classification of the EEG Data. Frontiers in Aging Neuroscience, 0 , 14 , .	3.4	4