Michael R Horsman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7936839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging hypoxia to improve radiotherapy outcome. Nature Reviews Clinical Oncology, 2012, 9, 674-687.	27.6	519
2	Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Seminars in Radiation Oncology, 1996, 6, 10-21.	2.2	390
3	Vascular-targeting therapies for treatment of malignant disease. Cancer, 2004, 100, 2491-2499.	4.1	307
4	Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncology, The, 2005, 6, 757-764.	10.7	264
5	Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors. ACS Nano, 2009, 3, 1947-1951.	14.6	242
6	Pathophysiologic Effects of Vascular-Targeting Agents and the Implications for Combination with Conventional Therapies. Cancer Research, 2006, 66, 11520-11539.	0.9	237
7	The impact of hypoxia and its modification of the outcome of radiotherapy. Journal of Radiation Research, 2016, 57, i90-i98.	1.6	229
8	Differentiation and definition of vascular-targeted therapies. Clinical Cancer Research, 2005, 11, 416-20.	7.0	195
9	Pathophysiological Basis for the Formation of the Tumor Microenvironment. Frontiers in Oncology, 2016, 6, 66.	2.8	152
10	Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers, 2019, 11, 60.	3.7	142
11	The Relationship between Tumor Blood Flow, Angiogenesis, Tumor Hypoxia, and Aerobic Glycolysis. Cancer Research, 2013, 73, 5618-5624.	0.9	140
12	Tumor Hypoxia: Impact on Radiation Therapy and Molecular Pathways. Frontiers in Oncology, 2020, 10, 562.	2.8	136
13	Nicotinamide and Other Benzamide Analogs as Agents for Overcoming Hypoxic Cell Radiation Resistance in Tumours. Acta Oncológica, 1995, 34, 571-587.	1.8	126
14	Influence of oxygen concentration and pH on expression of hypoxia induced genes. Radiotherapy and Oncology, 2005, 76, 187-193.	0.6	111
15	Winner of the 1988 Lund Science Award: Hydralazine-induced enhancement of hyperthermic damage in a C3H mammary carcinoma <i>in vivo</i> . International Journal of Hyperthermia, 1989, 5, 123-136.	2.5	105
16	Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiotherapy and Oncology, 2001, 60, 155-161.	0.6	105
17	Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 2294-2303.	6.4	104
18	Aerobic glycolysis in cancers: Implications for the usability of oxygenâ€responsive genes and fluorodeoxyglucoseâ€PET as markers of tissue hypoxia. International Journal of Cancer, 2008, 122, 2726-2734.	5.1	104

#	Article	IF	CITATIONS
19	Modulation of the tumor vasculature and oxygenation to improve therapy. , 2015, 153, 107-124.		104
20	Tumor Radiosensitization by Nicotinamide: A Result of Improved Perfusion and Oxygenation. Radiation Research, 1989, 118, 139.	1.5	98
21	Radiosensitization by Nicotinamide in Vivo: A Greater Enhancement of Tumor Damage Compared to That of Normal Tissues. Radiation Research, 1987, 109, 479.	1.5	97
22	Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. International Journal of Hyperthermia, 2016, 32, 446-454.	2.5	97
23	Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells. Radiotherapy and Oncology, 2013, 108, 500-505.	0.6	95
24	The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumors. International Journal of Radiation Oncology Biology Physics, 1998, 42, 895-898.	0.8	92
25	Comparison of the biodistribution of two hypoxia markers [18 F]FETNIM and [18 F]FMISO in an experimental mammary carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2004, 31, 513-520.	6.4	88
26	Identifying pH independent hypoxia induced genes in human squamous cell carcinomas <i>in vitro</i> . Acta OncolÅ ³ gica, 2010, 49, 895-905.	1.8	88
27	Nicotinamide pharmacokinetics in humans and mice: a comparative assessment and the implications for radiotherapy. Radiotherapy and Oncology, 1993, 27, 131-139.	0.6	83
28	Vascular targeted therapies in oncology. Cell and Tissue Research, 2009, 335, 241-248.	2.9	83
29	Improved Tumor Response by Combining Radiation and the Vascular-Damaging Drug 5,6-Dimethylxanthenone-4-acetic Acid. Radiation Research, 2001, 156, 503-509.	1.5	81
30	Measurement of tumor oxygenation. International Journal of Radiation Oncology Biology Physics, 1998, 42, 701-704.	0.8	80
31	Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiotherapy and Oncology, 2007, 83, 389-397.	0.6	80
32	Imaging Hypoxia in Xenografted and Murine Tumors With 18F-Fluoroazomycin Arabinoside: A Comparative Study Involving microPET, Autoradiography, Po2-Polarography, and Fluorescence Microscopy. International Journal of Radiation Oncology Biology Physics, 2008, 70, 1202-1212.	0.8	79
33	Improving the radiation response in a c3h mouse mammary carcinoma by normobaric oxygen or carbogen breathing. International Journal of Radiation Oncology Biology Physics, 1992, 22, 415-419.	0.8	74
34	Tissue physiology and the response to heat. International Journal of Hyperthermia, 2006, 22, 197-203.	2.5	73
35	Mechanism of action of the selective tumor radiosensitizer nicotinamide. International Journal of Radiation Oncology Biology Physics, 1988, 15, 685-690.	0.8	72
36	Relationship between radiobiological hypoxia and direct estimates of tumour oxygenation in a mouse tumour model. Radiotherapy and Oncology, 1993, 28, 69-71.	0.6	71

#	Article	IF	CITATIONS
37	Relationship between radiobiological hypoxia in tumors and electrode measurements of tumor oxygenation. International Journal of Radiation Oncology Biology Physics, 1994, 29, 439-442.	0.8	71
38	Combretastatin A-4 disodium phosphate: a vascular targeting agent that improves that improves the anti-tumor effects of hyperthermia, radiation, and mild thermoradiotheraphy. International Journal of Radiation Oncology Biology Physics, 2001, 51, 1018-1024.	0.8	67
39	Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage <i>in vivo</i> . Acta Oncológica, 2017, 56, 1387-1391.	1.8	64
40	Hypoxia induced expression of endogenous markers in vitro is highly influenced by pH. Radiotherapy and Oncology, 2007, 83, 362-366.	0.6	63
41	Assessment of Hypoxia in Experimental Mice Tumours by [18 F] Fluoromisonidazole PET and pO 2 Electrode Measurements. Acta Oncológica, 2002, 41, 304-312.	1.8	62
42	Resolution in PET hypoxia imaging: Voxel size matters. Acta Oncológica, 2008, 47, 1201-1210.	1.8	62
43	Targeting tumor blood vessels: an adjuvant strategy for radiation therapy. Radiotherapy and Oncology, 2000, 57, 5-12.	0.6	60
44	Combination of vascular targeting agents with thermal or radiation therapy. International Journal of Radiation Oncology Biology Physics, 2002, 54, 1518-1523.	0.8	60
45	The potentiation of radiation damage by nicotinamide in the SCCVII tumour in vivo. Radiotherapy and Oncology, 1990, 18, 49-57.	0.6	59
46	Reducing Acute and Chronic Hypoxia in Tumours by Combining Nicotinamide with Carbogen Breathing. Acta Oncológica, 1994, 33, 371-376.	1.8	59
47	Vascular targeting effects of ZD6126 in a C3H mouse mammary carcinoma and the enhancement of radiation response. International Journal of Radiation Oncology Biology Physics, 2003, 57, 1047-1055.	0.8	58
48	Effect of intratumoral heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode Po2 measurements in murine tumors. International Journal of Radiation Oncology Biology Physics, 2005, 62, 854-861.	0.8	56
49	Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance. Radiotherapy and Oncology, 2011, 99, 373-378.	0.6	55
50	Early Effects of Combretastatin-A4 Disodium Phosphate on Tumor Perfusion and Interstitial Fluid Pressure. Neoplasia, 2007, 9, 108-112.	5.3	54
51	Current development status of small-molecule vascular disrupting agents. Current Opinion in Investigational Drugs, 2006, 7, 522-8.	2.3	52
52	Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast?. Radiotherapy and Oncology, 2009, 92, 429-436.	0.6	50
53	Preferential tumor radiosensitization by analogs of nicotinamide and benzamide. International Journal of Radiation Oncology Biology Physics, 1986, 12, 1307-1310.	0.8	45
54	Radiosensitization by nicotinamide in tumors and normal tissues: The importance of tissue oxygenation status. International Journal of Radiation Oncology Biology Physics, 1989, 16, 1273-1276.	0.8	41

#	Article	IF	CITATIONS
55	Relationship between the hydralazine-induced changes in murine tumor blood supply and mouse blood pressure. International Journal of Radiation Oncology Biology Physics, 1992, 22, 455-458.	0.8	41
56	Nicotinamide as a radiosensitizer in tumours and normal tissues: the importance of drug dose and timing. Radiotherapy and Oncology, 1997, 45, 167-174.	0.6	41
57	Influence of carboxyhemoglobin level on tumor growth, blood flow, and radiation response in an experimental model. International Journal of Radiation Oncology Biology Physics, 1992, 22, 421-424.	0.8	40
58	Accessing radiation response using hypoxia PET imaging and oxygen sensitive electrodes: A preclinical study. Radiotherapy and Oncology, 2011, 99, 418-423.	0.6	40
59	Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Seminars in Nuclear Medicine, 2020, 50, 562-583.	4.6	40
60	The Importance of Determining Necrotic Fraction when Studying the Effect of Tumour Volume on Tissue Oxygenation. Acta Oncológica, 1995, 34, 297-300.	1.8	39
61	The radiation response of KHT sarcomas following nicotinamide treatment and carbogen breathing. Radiotherapy and Oncology, 1994, 31, 117-122.	0.6	38
62	Matrix metalloproteinase-9 measured in urine from bladder cancer patients is an independent prognostic marker of poor survival. Acta Oncológica, 2010, 49, 1283-1287.	1.8	37
63	Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncológica, 2015, 54, 1623-1630.	1.8	37
64	Improving Local Tumor Control by Combining Vascular Targeting Drugs, Mild Hyperthermia and Radiation. Acta Oncológica, 2001, 40, 497-503.	1.8	36
65	Prospective evaluation of angiogenic, hypoxic and EGFRâ€related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan. Apmis, 2010, 118, 585-594.	2.0	36
66	Biochemical and physiological changes induced by nicotinamide in a C3H mouse mammary carcinoma and CDF1 mice. International Journal of Radiation Oncology Biology Physics, 1992, 22, 451-454.	0.8	35
67	Relationship of hypoxia to metallothionein expression in murine tumors. International Journal of Radiation Oncology Biology Physics, 1998, 42, 727-730.	0.8	35
68	Intravenous administration of Gd-DTPA prior to DWI does not affect the apparent diffusion constant. Magnetic Resonance Imaging, 2005, 23, 685-689.	1.8	35
69	Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiotherapy and Oncology, 2009, 92, 443-449.	0.6	35
70	Assessing hypoxia in animal tumor models based on pharmocokinetic analysis of dynamic FAZA PET. Acta Oncolųgica, 2010, 49, 922-933.	1.8	35
71	Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Preclinical Studies of Antivascular Treatments. Pharmaceutics, 2012, 4, 563-589.	4.5	35
72	Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Review of Anticancer Therapy, 2004, 4, 321-327.	2.4	32

#	Article	IF	CITATIONS
73	Inhibition of tumor lactate oxidation: Consequences for the tumor microenvironment. Radiotherapy and Oncology, 2011, 99, 404-411.	0.6	31
74	The oxygen effect and fractionated radiotherapy. , 2009, , 207-216.		31
75	Effect of carbon monoxide breathing on hypoxia and radiation response in the SCCVII tumor in vivo. International Journal of Radiation Oncology Biology Physics, 1994, 29, 449-454.	0.8	29
76	Initial evaluation of the antitumour activity of KGP94, a functionalized benzophenone thiosemicarbazone inhibitor of cathepsin L. European Journal of Medicinal Chemistry, 2012, 58, 568-572.	5.5	29
77	The use of blood flow modifiers to improve the treatment response of solid tumors. Radiotherapy and Oncology, 1991, 20, 47-52.	0.6	28
78	Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization. International Journal of Mass Spectrometry, 2014, 365-366, 56-63.	1.5	28
79	Combretastatin A-4 Phosphate Affects Tumor Vessel Volume and Size Distribution as Assessed Using MRI-Based Vessel Size Imaging. Clinical Cancer Research, 2012, 18, 6469-6477.	7.0	27
80	APD-Containing Cyclolipodepsipeptides Target Mitochondrial Function in Hypoxic Cancer Cells. Cell Chemical Biology, 2018, 25, 1337-1349.e12.	5.2	27
81	Overcoming tumour radiation resistance resulting from acute hypoxia. European Journal of Cancer, 1992, 28, 717-718.	2.8	26
82	Tumor blood flow changes induced by chemical modifiers of radiation response. International Journal of Radiation Oncology Biology Physics, 1992, 22, 459-462.	0.8	26
83	Relationship Between Tumour Oxygenation, Bioenergetic Status and Radiobiological Hypoxia in an Experimental Model. Acta Oncológica, 1995, 34, 329-334.	1.8	26
84	Intravascular contrast agent–enhanced MRI measuring contrast clearance and tumor blood volume and the effects of vascular modifiers in an experimental tumor. International Journal of Radiation Oncology Biology Physics, 2005, 61, 1208-1215.	0.8	26
85	The usability of a 15-gene hypoxia classifier as a universal hypoxia profile in various cancer cell types. Radiotherapy and Oncology, 2015, 116, 346-351.	0.6	26
86	Hypoxia as a Biomarker and for Personalized Radiation Oncology. Recent Results in Cancer Research, 2016, 198, 123-142.	1.8	26
87	Results from 11C-metformin-PET scans, tissue analysis and cellular drug-sensitivity assays questions the view that biguanides affects tumor respiration directly. Scientific Reports, 2017, 7, 9436.	3.3	25
88	Induction of hypoxia by vascular disrupting agents and the significance for their combination with radiation therapy. Acta Oncológica, 2013, 52, 1320-1326.	1.8	24
89	PET imaging of tumor hypoxia using ¹⁸ F-labeled pimonidazole. Acta Oncológica, 2013, 52, 1300-1307.	1.8	24
90	Drug induced perturbations in tumor blood flow: therapeutic potential and possible limitations. Radiotherapy and Oncology, 1991, 20, 93-101.	0.6	23

#	Article	IF	CITATIONS
91	Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorganic and Medicinal Chemistry, 2015, 23, 6974-6992.	3.0	23
92	The measurement of radiosensitizer-induced changes in mouse tumor metabolism by 31P magnetic resonance spectroscopy. International Journal of Radiation Oncology Biology Physics, 1991, 20, 291-294.	0.8	22
93	The effect of combined nicotinamide and carbogen treatments in human tumour xenografts: oxygenation and tumour control studies. Radiotherapy and Oncology, 1998, 48, 143-148.	0.6	22
94	The impact of hypoxia on the activity of lactate dehydrogenase in two different pre-clinical tumour models. Acta Oncológica, 2008, 47, 941-947.	1.8	22
95	Tumour perfusion and associated physiology: Characterization and significance for hyperthermia. International Journal of Hyperthermia, 2010, 26, 209-210.	2.5	22
96	Non-invasive imaging of combretastatin activity in two tumor models: Association with invasive estimates. Acta OncolÃ ³ gica, 2010, 49, 906-913.	1.8	22
97	Peritoneal macrophages mediated delivery of chitosan/siRNA nanoparticle to the lesion site in a murine radiation-induced fibrosis model. Acta Oncológica, 2013, 52, 1730-1738.	1.8	22
98	A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo. Acta Biomaterialia, 2015, 18, 21-29.	8.3	22
99	Reliability of blood lactate as a measure of exercise intensity in different strains of mice during forced treadmill running. PLoS ONE, 2019, 14, e0215584.	2.5	21
100	Cisplatin and Hyperthermia Treatment of A C3H Mammary Carcinoma in Vivo: Importance of sequence, interval, drug dose, and temperature. Acta Oncológica, 1992, 31, 347-351.	1.8	20
101	Ischaemia induced cell death in tumors: Importance of temperature and pH. International Journal of Radiation Oncology Biology Physics, 1994, 29, 499-503.	0.8	20
102	Preclinical Studies to Predict Efficacy of Vascular Changes Induced by Combretastatin A-4 Disodium Phosphate in Patients. International Journal of Radiation Oncology Biology Physics, 2008, 70, 859-866.	0.8	19
103	Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation. International Journal of Radiation Biology, 2011, 87, 1126-1134.	1.8	19
104	Photoelectron Spectra and Electronic Structures of the Radiosensitizer Nimorazole and Related Compounds. Journal of Physical Chemistry A, 2015, 119, 9986-9995.	2.5	19
105	Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro. PLoS ONE, 2015, 10, e0134955.	2.5	19
106	Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum. International Journal of Radiation Biology, 2005, 81, 937-944.	1.8	18
107	The effects of the vascular disrupting agents combretastatin A-4 disodium phosphate, 5,6-dimethylxanthenone-4-acetic acid and ZD6126 in a murine tumour: A comparative assessment using MRI and MRS. Acta Oncológica, 2006, 45, 306-316.	1.8	18
108	Radiation administered as a large single dose or in a fractionated schedule: Role of the tumour vasculature as a target for influencing response. Acta OncolÃ ³ gica, 2006, 45, 876-880.	1.8	18

#	Article	IF	CITATIONS
109	Acute Effects of Vascular Modifying Agents in Solid Tumors Assessed by Noninvasive Laser Doppler Flowmetry and Near Infrared Spectroscopy. Neoplasia, 2002, 4, 263-267.	5.3	17
110	Tumour hypoxia $\hat{a} \in A$ characteristic feature with a complex molecular background. Radiotherapy and Oncology, 2006, 81, 119-121.	0.6	17
111	Enhanced local tumour control after single or fractionated radiation treatment using the hypoxic cell radiosensitizer doranidazole. Radiotherapy and Oncology, 2008, 87, 331-338.	0.6	16
112	Combretastatin-induced hypertension and the consequences for its combination with other therapies. Vascular Pharmacology, 2011, 54, 13-17.	2.1	16
113	Evaluation of anti-vascular therapy with texture analysis. Anticancer Research, 2005, 25, 3399-405.	1.1	16
114	The Effect of Shark Cartilage Extracts on the Growth and Metastatic Spread of the SCCVII Carcinoma. Acta Oncológica, 1998, 37, 441-445.	1.8	15
115	Angiogenesis and vascular targeting: Relevance for hyperthermia. International Journal of Hyperthermia, 2008, 24, 57-65.	2.5	15
116	The effect of combretastatin A4 disodium phosphate and 5,6-dimethylxanthenone-4-acetic acid on water diffusion and blood perfusion in tumours. Acta Oncológica, 2008, 47, 1071-1076.	1.8	14
117	Biodistribution of ^{99m} Tc-HYNIC-lactadherin in mice – a potential tracer for visualizing apoptosis <i>in vivo</i> . Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70, 209-216.	1.2	14
118	Proton scanning and X-ray beam irradiation induce distinct regulation of inflammatory cytokines in a preclinical mouse model. International Journal of Radiation Biology, 2020, 96, 1238-1244.	1.8	14
119	Effect of radiation on cell proliferation and tumor hypoxia in HPV-positive head and neck cancer in vivo models. Anticancer Research, 2014, 34, 6297-304.	1.1	14
120	Strain and tumour specific variations in the effect of hypoxia on osteopontin levels in experimental models. Radiotherapy and Oncology, 2006, 80, 165-171.	0.6	13
121	Preclinical studies on how to deal with patient intolerance to nicotinamide and carbogen. Radiotherapy and Oncology, 2004, 70, 301-309.	0.6	12
122	In vivo Identification and Specificity assessment of mRNA markers of hypoxia in human and mouse tumors. BMC Cancer, 2011, 11, 63.	2.6	12
123	Targeting tumour hypoxia to improve outcome of stereotactic radiotherapy. Acta Oncológica, 2015, 54, 1385-1392.	1.8	12
124	Segmentation of dynamic contrast enhanced magnetic resonance imaging data. Acta Oncológica, 2008, 47, 1265-1270.	1.8	11
125	The vascular-disrupting agent, combretastatin-A4-phosphate, enhances neurogenic vasoconstriction in rat small arteries. European Journal of Pharmacology, 2012, 695, 104-111.	3.5	11
126	Nicotinamide and the hypoxia problem. Radiotherapy and Oncology, 1991, 22, 79-80.	0.6	10

#	Article	IF	CITATIONS
127	Carbogen and nicotinamide: expectations too high? (response to J. Martin Brown). Radiotherapy and Oncology, 1992, 24, 121-122.	0.6	10
128	Cytotoxic Effect of Tumour Necrosis Factor-Alpha on Sarcoma F Cells at Tumour Relevant Oxygen Tensions. Acta Oncológica, 1995, 34, 423-427.	1.8	10
129	Tumourigenicity and radiation resistance of mesenchymal stem cells. Acta Oncológica, 2012, 51, 669-679.	1.8	10
130	Ultrahighâ€field DCEâ€MRI of angiogenesis in a novel angiogenesis mouse model. Journal of Magnetic Resonance Imaging, 2012, 35, 703-710.	3.4	10
131	Realistic biological approaches for improving thermoradiotherapy. International Journal of Hyperthermia, 2016, 32, 14-22.	2.5	10
132	Overcoming tumour radiation resistance resulting from acute hypoxia. European Journal of Cancer, 1992, 28, 2084-2085.	2.8	9
133	Importance of nicotinamide dose on blood pressure changes in mice and humans. International Journal of Radiation Oncology Biology Physics, 1994, 29, 455-458.	0.8	9
134	Reoxygenation in a C3H Mouse Mammary Carcinoma the importance of chronic rather than acute hypoxia. Acta Oncológica, 1995, 34, 325-328.	1.8	9
135	Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation. International Journal of Hyperthermia, 2015, 31, 453-459.	2.5	9
136	Enhancing the radiation response of tumors but not early or late responding normal tissues using a vascular disrupting agent. Acta Oncológica, 2017, 56, 1634-1638.	1.8	9
137	The potential of hyperpolarized ¹³ C magnetic resonance spectroscopy to monitor the effect of combretastatin based vascular disrupting agents. Acta Oncológica, 2017, 56, 1626-1633.	1.8	9
138	Tumors Resistant to Checkpoint Inhibitors Can Become Sensitive after Treatment with Vascular Disrupting Agents. International Journal of Molecular Sciences, 2020, 21, 4778.	4.1	9
139	The Ability of Nicotinamide to Inhibit the Growth of a C3H Mouse Mammary Carcinoma. Acta OncolĀ ³ gica, 1995, 34, 443-446.	1.8	8
140	Hyperpolarized magnetic resonance spectroscopy for assessing tumor hypoxia. Acta Oncológica, 2015, 54, 1393-1398.	1.8	8
141	The Combination of Nicotinamide and Carbogen Breathing to Improve Tumour Oxygenation Prior to Radiation Treatment. Advances in Experimental Medicine and Biology, 1994, 361, 635-642.	1.6	8
142	A Comparison of the Physiological Effects of RSU1069 and RB6145 in the SCCVII Murine Tumour. Acta OncolÅ ³ gica, 1996, 35, 989-994.	1.8	7
143	Combined Modality Approaches Using Vasculature-disrupting Agents. , 2006, , 123-136.		7
144	A Combretastatin-Mediated Decrease in Neutrophil Concentration in Peripheral Blood and the Impact on the Anti-Tumor Activity of This Drug in Two Different Murine Tumor Models. PLoS ONE, 2014, 9, e110091.	2.5	7

#	Article	IF	CITATIONS
145	The effect of misonidazole on the cytotoxicity and repair of potentially lethal damage from alkylating agents in vitro. International Journal of Radiation Oncology Biology Physics, 1982, 8, 761-765.	0.8	6
146	BW12C-induced changes in haemoglobin-oxygen affinity in mice and its influence on the radiation response of a C3H mouse mammary carcinoma. Radiotherapy and Oncology, 1992, 25, 43-48.	0.6	6
147	FDG-PET reproducibility in tumor-bearing mice: comparing a traditional SUV approach with a tumor-to-brain tissue ratio approach. Acta Oncológica, 2017, 56, 706-712.	1.8	6
148	Measurement of PO2 in a Murine Tumour and Its Correlation with Hypoxic Fraction. Advances in Experimental Medicine and Biology, 1994, 345, 493-500.	1.6	6
149	Vasculature-targeting Therapies and Hyperthermia. , 2006, , 137-157.		5
150	Imaging tumour physiology and vasculature to predict and assess response to heat. International Journal of Hyperthermia, 2010, 26, 264-272.	2.5	5
151	Treatment with the vascular disrupting agent combretastatin is associated with impaired AQP2 trafficking and increased urine output. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R186-R198.	1.8	5
152	Ultra-high field1H magnetic resonance imaging approaches for acute hypoxia. Acta Oncológica, 2013, 52, 1287-1292.	1.8	5
153	Hypoxia positron emission tomography imaging: combining information on perfusion and tracer retention to improve hypoxia specificity. Acta Oncológica, 2017, 56, 1583-1590.	1.8	5
154	Dual-tracer PET of viable tumor volume and hypoxia for identification of necrosis-containing radio-resistant Sub-volumes. Acta OncolÃ ³ gica, 2019, 58, 1476-1482.	1.8	5
155	Tumour Radiosensitization by Nicotinamide: Is It the Result of an Improvement in Tumour Oxygenation?. Advances in Experimental Medicine and Biology, 1994, 345, 403-409.	1.6	5
156	Misonidazole chemosensitization of EMT6 spheroids to melphalan. Radiotherapy and Oncology, 1989, 15, 103-114.	0.6	4
157	Tolerance to nicotinamide and carbogen with radiation therapy for glioblastoma. Radiotherapy and Oncology, 1997, 43, 109-110.	0.6	4
158	In vivo bio-distribution and homing of endothelial outgrowth cells in a tumour model. Nuclear Medicine and Biology, 2014, 41, 848-855.	0.6	4
159	Accumulation of nano-sized particles in a murine model of angiogenesis. Biochemical and Biophysical Research Communications, 2014, 443, 470-476.	2.1	4
160	Small-Molecule Vascular Disrupting Agents in Cancer Therapy. , 2008, , 297-310.		4
161	Tumour microenvironment and radiation response in sarcomas originating from tumourigenic human mesenchymal stem cells. International Journal of Radiation Biology, 2012, 88, 457-465.	1.8	3

162 Dose-Response Modifiers in Radiation Therapy. , 2016, , 51-62.e3.

#	Article	IF	CITATIONS
163	Modification of alkylating agent cytotoxicity by cisplatin. International Journal of Radiation Oncology Biology Physics, 1984, 10, 1669-1673.	0.8	2
164	The effects of purine nucleoside analogs on the response of the rif-1 tumor to melphalan in vivo. International Journal of Radiation Oncology Biology Physics, 1986, 12, 801-806.	0.8	2
165	The Effect of Artificially Induced Hyperglycemia on the Radiation Response of the Lewis Lung and EMT6 Tumor Models. International Journal of Radiation Biology, 1988, 54, 803-811.	1.8	2
166	Reduction of Cisplatinum-Induced Renal Toxicity in Mice by Tetrahydroindazolone Carboxylic Acid (HIDA). Acta Oncológica, 1993, 32, 53-56.	1.8	2
167	Does the combination of hyperthermia with low LET (linear energy transfer) radiation induce anti-tumor effects equivalent to those seen with high LET radiation alone?. International Journal of Hyperthermia, 2021, 38, 105-110.	2.5	2
168	Refinement of an Established Procedure and Its Application for Identification of Hypoxia in Prostate Cancer Xenografts. Cancers, 2021, 13, 2602.	3.7	2
169	Hypoxia, Metastasis, and Antiangiogenic Therapies. Cancer Drug Discovery and Development, 2014, , 205-227.	0.4	2
170	Improved Treatment of Tumours in vivo by Combining the Bioreductive Drug RSU-1069, Hydralazine and Hyperthermia. , 1990, , 193-202.		2
171	Uniform Combretastatin-induced Effect on Monocytes and Neutrophils in Peripheral Blood but Not in Tumors. Anticancer Research, 2015, 35, 2559-64.	1.1	2
172	Simulation of heterogeneous molecular delivery in tumours using μCT reconstructions and MRI validation. Microvascular Research, 2016, 108, 69-74.	2.5	1
173	Hypoxia and Radiation Therapy. Cancer Drug Discovery and Development, 2014, , 265-281.	0.4	1
174	Dose-Response Modifiers in Radiation Therapy. , 2012, , 53-64.		1
175	In vitro hypoxia responsiveness of [18F] FDG and [18F] FAZA retention: influence of shaking versus stagnant conditions, glass versus polystyrene substrata and cell number down-scaling. EJNMMI Radiopharmacy and Chemistry, 2020, 5, 14.	3.9	1
176	In response to Drs. van der Zee and van Rhoon. International Journal of Radiation Oncology Biology Physics, 2006, 66, 634.	0.8	0
177	Treatment with a vascular disrupting agent does not increase recruitment of indium labelled human endothelial outgrowth cells in an experimental tumour model. BMC Cancer, 2014, 14, 903.	2.6	0
178	Clinical Imaging of Hypoxia. Cancer Drug Discovery and Development, 2014, , 179-201.	0.4	0
179	Significance of the Tumour Microenvironment in Radiotherapy. , 2009, , 137-156.		0

180 Vascular Targeting Agents. , 2011, , 3897-3900.

0

#	Article	IF	CITATIONS
181	INTERACTION OF HYPERTHERMIA AND RADIATION IN SOLID TUMOURS IN VIVO. , 1992, , 1033-1040.		0

182 Vascular Targeting Agents. , 2017, , 4797-4801.