Jay C Dunlap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7936139/publications.pdf

Version: 2024-02-01

160 20,301 67 137
papers citations h-index g-index

168 168 168 9995
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Evolution of the repression mechanisms in circadian clocks. Genome Biology, 2022, 23, 17.	8.8	4
2	Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in <i>Neurospora</i> . MBio, 2021, 12, e0149321.	4.1	6
3	Quantitative single molecule RNA-FISH and RNase-free cell wall digestion in Neurospora crassa. Fungal Genetics and Biology, 2021, 156, 103615.	2.1	3
4	Evaluating the circadian rhythm and response to glucose addition in dispersed growth cultures of Neurospora crassa. Fungal Biology, 2020, 124, 398-406.	2.5	10
5	Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Communication and Signaling, 2020, 18, 181.	6.5	36
6	A Pro- and Anti-inflammatory Axis Modulates the Macrophage Circadian Clock. Frontiers in Immunology, 2020, 11, 867.	4.8	29
7	PRD-2 directly regulates casein kinase I and counteracts nonsense-mediated decay in the Neurospora circadian clock. ELife, 2020, 9, .	6.0	9
8	The Phospho-Code Determining Circadian Feedback Loop Closure and Output in Neurospora. Molecular Cell, 2019, 74, 771-784.e3.	9.7	74
9	Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms. Journal of Biological Rhythms, 2018, 33, 99-105.	2.6	14
10	Just-So Stories and Origin Myths: Phosphorylation and Structural Disorder in Circadian Clock Proteins. Molecular Cell, 2018, 69, 165-168.	9.7	18
11	Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Applied Microbiology and Biotechnology, 2018, 102, 3849-3863.	3. 6	14
12	Light sensing by opsins and fungal ecology: NOPâ€1 modulates entry into sexual reproduction in response to environmental cues. Molecular Ecology, 2018, 27, 216-232.	3.9	43
13	Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Systems, 2018, 7, 613-626.e5.	6.2	93
14	A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genetics, 2018, 14, e1007192.	3.5	22
15	The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3: Genes, Genomes, Genetics, 2017, 7, 129-142.	1.8	47
16	Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiology Spectrum, 2017, 5, .	3.0	121
17	Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. MBio, 2017, 8, .	4.1	25
18	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8

#	Article	lF	Citations
19	Structure of the frequencyâ€interacting <scp>RNA</scp> helicase: a protein interaction hub for the circadianÂclock. EMBO Journal, 2016, 35, 1707-1719.	7.8	31
20	Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environmental Microbiology, 2016, 18, 5-20.	3.8	56
21	Circadian Oscillators: Around the Transcription–Translation Feedback Loop and on to Output. Trends in Biochemical Sciences, 2016, 41, 834-846.	7.5	147
22	Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa. Genetics, 2016, 204, 163-176.	2.9	23
23	Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates. MBio, 2016, 7, .	4.1	58
24	Yes, circadian rhythms actually do affect almost everything. Cell Research, 2016, 26, 759-760.	12.0	25
25	The Fast-Evolving <i>phy-2</i> Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. MBio, 2016, 7, e02148.	4.1	37
26	Alternative Use of DNA Binding Domains by the <i>Neurospora</i> White Collar Complex Dictates Circadian Regulation and Light Responses. Molecular and Cellular Biology, 2016, 36, 781-793.	2.3	46
27	The circadian system as an organizer of metabolism. Fungal Genetics and Biology, 2016, 90, 39-43.	2.1	45
28	A Tool Set for the Genome-Wide Analysis of Neurospora crassa by RT-PCR. G3: Genes, Genomes, Genetics, 2015, 5, 2043-2049.	1.8	14
29	<i>period</i> -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the <i>Neurospora</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15707-15712.	7.1	37
30	Dissecting the Mechanisms of the Clock in Neurospora. Methods in Enzymology, 2015, 551, 29-52.	1.0	38
31	Decoupling circadian clock protein turnover from circadian period determination. Science, 2015, 347, 1257277.	12.6	141
32	Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity. PLoS Genetics, 2015, 11, e1005215.	3. 5	42
33	Circadian Control Sheds Light on Fungal Bioluminescence. Current Biology, 2015, 25, 964-968.	3.9	65
34	Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. Eukaryotic Cell, 2015, 14, 1073-1080.	3.4	182
35	Fungal photobiology: visible light as a signal for stress, space and time. Current Genetics, 2015, 61, 275-288.	1.7	127
36	Genome-Wide Characterization of Light-Regulated Genes in <i>Neurospora crassa </i> . G3: Genes, Genomes, Genetics, 2014, 4, 1731-1745.	1.8	82

#	Article	IF	CITATIONS
37	Woody Hastings. Journal of Biological Rhythms, 2014, 29, 315-317.	2.6	O
38	A Kinetic Study of the Effects of Light on Circadian Rhythmicity of the frq Promoter of Neurospora crassa. Journal of Biological Rhythms, 2014, 29, 38-48.	2.6	10
39	Neurospora WC-1 Recruits SWI/SNF to Remodel frequency and Initiate a Circadian Cycle. PLoS Genetics, 2014, 10, e1004599.	3.5	61
40	Editorial overview: Host–microbe interactions: fungi. Current Opinion in Microbiology, 2014, 20, v-vi.	5.1	1
41	Bright to Dim Oscillatory Response of the Neurospora Circadian Oscillator. Journal of Biological Rhythms, 2014, 29, 49-59.	2.6	4
42	Analysis of clock-regulated genes in $\langle i \rangle$ Neurospora $\langle i \rangle$ reveals widespread posttranscriptional control of metabolic potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16995-17002.	7.1	131
43	Circadian Rhythms. , 2014, , 442-466.		1
44	6 Photobiology and Circadian Clocks in Neurospora. , 2014, , 121-148.		8
45	Conserved RNA Helicase FRH Acts Nonenzymatically to Support the Intrinsically Disordered Neurospora Clock Protein FRQ. Molecular Cell, 2013, 52, 832-843.	9.7	83
46	A fable of too much too fast. Nature, 2013, 495, 57-58.	27.8	12
47	Aging Well with a Little Wine and a Good Clock. Cell, 2013, 153, 1421-1422.	28.9	10
48	The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism, and Stress Resistance in Response to Light. MBio, $2013,4,.$	4.1	104
49	Functional Analysis of the Aspergillus nidulans Kinome. PLoS ONE, 2013, 8, e58008.	2.5	120
50	Light-Inducible System for Tunable Protein Expression in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2012, 2, 1207-1212.	1.8	29
51	High-resolution spatiotemporal analysis of gene expression in real time: In vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genetics and Biology, 2012, 49, 681-683.	2.1	39
52	Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Molecular Biology of the Cell, 2012, 23, 3079-3093.	2.1	33
53	The circadian clock of <i>Neurospora crassa </i> . FEMS Microbiology Reviews, 2012, 36, 95-110.	8.6	196
54	Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora crassa. Eukaryotic Cell, 2011, 10, 1553-1564.	3.4	89

#	Article	IF	CITATIONS
55	Modulation of Clock Gene Expression by the Transcriptional Coregulator Receptor Interacting Protein 140 (RIP140). Journal of Biological Rhythms, 2011, 26, 187-199.	2.6	18
56	CHD1 Remodels Chromatin and Influences Transient DNA Methylation at the Clock Gene frequency. PLoS Genetics, 2011, 7, e1002166.	3.5	84
57	Structure of a Light-Activated LOV Protein Dimer That Regulates Transcription. Science Signaling, 2011, 4, ra50.	3.6	108
58	High-Throughput Production of Gene Replacement Mutants in Neurospora crassa. Methods in Molecular Biology, 2011, 722, 179-189.	0.9	55
59	Genetic and Molecular Characterization of a Cryptochrome from the Filamentous Fungus Neurospora crassa. Eukaryotic Cell, 2010, 9, 738-750.	3.4	69
60	FRQ-Interacting RNA Helicase Mediates Negative and Positive Feedback in the Neurospora Circadian Clock. Genetics, 2010, 184, 351-361.	2.9	89
61	Physical interaction between VIVID and white collar complex regulates photoadaptation in <i>Neurospora</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16715-16720.	7.1	138
62	Circadian rhythms: Phosphorylating the CLOCK. Cell Cycle, 2010, 9, 227-232.	2.6	7
63	High-Throughput Construction of Gene Deletion Cassettes for Generation of Neurospora crassa Knockout Strains. Methods in Molecular Biology, 2010, 638, 33-40.	0.9	51
64	Neurospora illuminates fungal photoreception. Fungal Genetics and Biology, 2010, 47, 922-929.	2.1	101
65	Circadian rhythms: phosphorylating the CLOCK. Cell Cycle, 2010, 9, 231-2.	2.6	3
66	Retinoic Acid Mediates Long-Paced Oscillations in Retinoid Receptor Activity: Evidence for a Potential Role for RIP140. PLoS ONE, 2009, 4, e7639.	2.5	8
67	Fungal Functional Genomics: Tunable Knockout-Knock-in Expression and Tagging Strategies. Eukaryotic Cell, 2009, 8, 800-804.	3.4	31
68	A High-Density Single Nucleotide Polymorphism Map for <i>Neurospora crassa</i> . Genetics, 2009, 181, 767-781.	2.9	54
69	Post-translational modifications in circadian rhythms. Trends in Biochemical Sciences, 2009, 34, 483-490.	7. 5	170
70	A Role for Id2 in Regulating Photic Entrainment of the Mammalian Circadian System. Current Biology, 2009, 19, 297-304.	3.9	53
71	Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO Journal, 2009, 28, 1029-1042.	7.8	249
72	CK2 and temperature compensation inNeurospora. Sleep and Biological Rhythms, 2009, 7, 162-171.	1.0	1

#	Article	IF	Citations
73	A Role for Casein Kinase 2 in the Mechanism Underlying Circadian Temperature Compensation. Cell, 2009, 137, 749-760.	28.9	125
74	Quantitative Proteomics Reveals a Dynamic Interactome and Phase-Specific Phosphorylation in the Neurospora Circadian Clock. Molecular Cell, 2009, 34, 354-363.	9.7	186
75	A Phylogenetically Conserved DNA Damage Response Resets the Circadian Clock. Journal of Biological Rhythms, 2009, 24, 193-202.	2.6	40
76	Simulating Dark Expressions and Interactions of frq and wc-1 in the Neurospora Circadian Clock. Biophysical Journal, 2008, 94, 1221-1232.	0.5	34
77	SIRT1 Is a Circadian Deacetylase for Core Clock Components. Cell, 2008, 134, 212-214.	28.9	111
78	Closing the circadian negative feedback loop: FRQ-dependent clearance of WC-1 from the nucleus. Genes and Development, 2008, 22, 3196-3204.	5.9	62
79	Fully Codon-Optimized <i>luciferase</i> Uncovers Novel Temperature Characteristics of the <i>Neurospora</i> Clock. Eukaryotic Cell, 2008, 7, 28-37.	3.4	134
80	Salad Days in the Rhythms Trade. Genetics, 2008, 178, 1-13.	2.9	24
81	The Molecular Workings of the Neurospora Biological Clock. Novartis Foundation Symposium, 2008, , 184-202.	1.1	6
82	Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project. Advances in Genetics, 2007, 57, 49-96.	1.8	191
83	The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes and Development, 2007, 21, 1494-1505.	5.9	158
84	A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in $\langle i \rangle$ Neurospora $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20102-20107.	7.1	24
85	Execution of the Circadian Negative Feedback Loop in Neurospora Requires the ATP-Dependent Chromatin-Remodeling Enzyme CLOCKSWITCH. Molecular Cell, 2007, 25, 587-600.	9.7	115
86	Long and short isoforms of <i>Neurospora</i> clock protein FRQ support temperatureâ€compensated circadian rhythms. FEBS Letters, 2007, 581, 5759-5764.	2.8	91
87	Conformational Switching in the Fungal Light Sensor Vivid. Science, 2007, 316, 1054-1057.	12.6	328
88	The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Molecular Microbiology, 2007, 64, 923-937.	2.5	81
89	How fungi keep time: circadian system in Neurospora and other fungi. Current Opinion in Microbiology, 2006, 9, 579-587.	5.1	126
90	CLOCK leaves its mark on histones. Trends in Biochemical Sciences, 2006, 31, 610-613.	7. 5	9

#	Article	lF	CITATIONS
91	PHYSIOLOGY: Enhanced: Running a Clock Requires Quality Time Together. Science, 2006, 311, 184-186.	12.6	21
92	Circadian Rhythmicity by Autocatalysis. PLoS Computational Biology, 2006, 2, e96.	3.2	58
93	The Neurospora Checkpoint Kinase 2: A Regulatory Link Between the Circadian and Cell Cycles. Science, 2006, 313, 644-649.	12.6	132
94	A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10352-10357.	7.1	1,060
95	Proteins in the Neurospora Circadian Clockworks. Journal of Biological Chemistry, 2006, 281, 28489-28493.	3.4	57
96	Neurospora Photoreceptors. , 2005, , 371-389.		14
97	Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Molecular Genetics and Genomics, 2005, 273, 137-149.	2.1	94
98	Analysis of Circadian Output Rhythms of Gene Expression in Neurospora and Mammalian Cells in Culture. Methods in Enzymology, 2005, 393, 315-341.	1.0	3
99	The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes and Development, 2005, 19, 2593-2605.	5.9	89
100	The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17681-17686.	7.1	123
101	From The Cover: Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2210-2215.	7.1	53
102	Temperature-modulated Alternative Splicing and Promoter Use in the Circadian Clock Gene frequency. Molecular Biology of the Cell, 2005, 16, 5563-5571.	2.1	109
103	Genetic and Molecular Analysis of Phytochromes from the Filamentous Fungus Neurospora crassa. Eukaryotic Cell, 2005, 4, 2140-2152.	3.4	142
104	Analysis of Circadian Rhythms in Neurospora: Overview of Assays and Genetic and Molecular Biological Manipulation. Methods in Enzymology, 2005, 393, 3-22.	1.0	30
105	A Nitrate-Induced frq-Less Oscillator in Neurospora crassa. Journal of Biological Rhythms, 2004, 19, 280-286.	2.6	65
106	Lessons from the Genome Sequence of <i>Neurospora crassa </i> : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	6.6	572
107	The Neurospora Circadian System. Journal of Biological Rhythms, 2004, 19, 414-424.	2.6	189
108	Kinases and Circadian Clocks. Developmental Cell, 2004, 6, 160-161.	7.0	6

#	Article	IF	Citations
109	Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature, 2003, 421, 948-952.	27.8	153
110	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	27.8	1,528
111	Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5914-5919.	7.1	183
112	Roles for WHITE COLLAR-1 in Circadian and General Photoperception in <i>Neurospora crassa</i> Genetics, 2003, 163, 103-114.	2.9	106
113	The <i>frequency</i> Gene Is Required for Temperature-Dependent Regulation of Many Clock-Controlled Genes in <i>Neurospora crassa</i> Genetics, 2003, 164, 923-933.	2.9	81
114	The molecular workings of the Neurospora biological clock. Novartis Foundation Symposium, 2003, 253, 184-98; discussion 102-9, 198-202, 281-4.	1.1	3
115	Neurospora Clock-Controlled Gene 9 (ccg-9) Encodes Trehalose Synthase: Circadian Regulation of Stress Responses and Development. Eukaryotic Cell, 2002, 1, 33-43.	3.4	54
116	White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency Promoter. Science, 2002, 297, 815-819.	12.6	490
117	Circadian Programs of Transcriptional Activation, Signaling, and Protein Turnover Revealed by Microarray Analysis of Mammalian Cells. Current Biology, 2002, 12, 551-557.	3.9	307
118	The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Molecular Microbiology, 2002, 41, 897-909.	2.5	16
119	Light and Clock Expression of the Neurospora Clock Gene <i>frequency</i> Is Differentially Driven by but Dependent on WHITE COLLAR-2. Genetics, 2002, 160, 149-158.	2.9	77
120	The PAS Protein VIVID Defines a Clock-Associated Feedback Loop that Represses Light Input, Modulates Gating, and Regulates Clock Resetting. Cell, 2001, 104, 453-464.	28.9	321
121	Genetic and Molecular Analysis of Circadian Rhythms inNeurospora. Annual Review of Physiology, 2001, 63, 757-794.	13.1	219
122	Circadian Clock-Specific Roles for the Light Response Protein WHITE COLLAR-2. Molecular and Cellular Biology, 2001, 21, 2619-2628.	2.3	38
123	Molecular Genetics of Circadian Rhythms inNeurosporaa Prototypic Circadian System. Handbook of Behavioral Neurobiology, 2001, , 335-350.	0.3	1
124	Analysis of Expressed Sequence Tags From Two Starvation, Time-of-Day-Specific Libraries of <i>Neurospora crassa</i> Reveals Novel Clock-Controlled Genes. Genetics, 2001, 157, 1057-1065.	2.9	82
125	A new slice on an old problem. Nature Neuroscience, 2000, 3, 305-306.	14.8	4
126	Interconnected Feedback Loops in the Neurospora Circadian System. Science, 2000, 289, 107-110.	12.6	336

#	Article	IF	CITATIONS
127	Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes and Development, 2000, 14, 1353-1363.	5.9	164
128	Eukaryotic circadian systems: cycles in common. Genes To Cells, 1999, 4, 01-10.	1.2	71
129	Circadian biology: Clocks for the real world. Current Biology, 1999, 9, R633-R635.	3.9	22
130	Molecular Bases for Circadian Clocks. Cell, 1999, 96, 271-290.	28.9	2,658
131	Common threads in eukaryotic circadian systems. Current Opinion in Genetics and Development, 1998, 8, 400-406.	3.3	45
132	How Temperature Changes Reset a Circadian Oscillator. , 1998, 281, 825-829.		209
133	Glyceraldehyde-3-phosphate Dehydrogenase Is Regulated on a Daily Basis by the Circadian Clock. Journal of Biological Chemistry, 1998, 273, 446-452.	3.4	79
134	Clock genes and temperature effects. NeuroReport, 1998, 9, i.	1.2	2
135	Neurospora wc-1 and wc-2: Transcription, Photoresponses, and the Origins of Circadian Rhythmicity. Science, 1997, 276, 763-769.	12.6	508
136	Alternative Initiation of Translation and Time-Specific Phosphorylation Yield Multiple Forms of the Essential Clock Protein FREQUENCY. Cell, 1997, 89, 469-476.	28.9	347
137	Thermally Regulated Translational Control of FRQ Mediates Aspects of Temperature Responses in the Neurospora Circadian Clock. Cell, 1997, 89, 477-486.	28.9	235
138	Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the Transcript. Cell, 1997, 91, 1043-1053.	28.9	817
139	GENETIC AND MOLECULAR ANALYSIS OF CIRCADIAN RHYTHMS. Annual Review of Genetics, 1996, 30, 579-601.	7.6	246
140	Chapter 2 The genetic and molecular dissection of a prototypic circadian system. Progress in Brain Research, 1996, 111, 11-27.	1.4	5
141	Isolation and Analysis of the <i>arg-13</i> Gene of <i>Neurospora crassa</i> Genetics, 1996, 143, 1163-1174.	2.9	32
142	Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell, 1995, 81, 1003-1012.	28.9	346
143	The Genetic Basis of the Circadian Clock: Identification of <i>frq</i> and FRQ as Clock Components in <i>Neurospora</i> . Novartis Foundation Symposium, 1995, 183, 3-25.	1.1	4
144	An efficient method for gene disruption in Neurospora crassa. Molecular Genetics and Genomics, 1994, 242, 490-494.	2.4	34

#	Article	IF	CITATIONS
145	Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science, 1994, 263, 1578-1584.	12.6	596
146	Genetic Analysis of Circadian Clocks. Annual Review of Physiology, 1993, 55, 683-728.	13.1	213
147	Molecular Analysis of the Neurospora Clock: Cloning and Characterization of the frequency and period-4 Genes. Chronobiology International, 1992, 9, 231-239.	2.0	10
148	Closely watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophila. Trends in Genetics, 1990, 6, 159-165.	6.7	101
149	Molecular cloning of genes under control of the circadian clock in Neurospora. Science, 1989, 243, 385-388.	12.6	247
150	The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature, 1989, 339, 558-562.	27.8	228
151	New cloning vectors using benomyl resistance as a dominant marker for selection inNeurospora crassa and in other filamentous fungi. Experimental Mycology, 1989, 13, 299-302.	1.6	12
152	[28] Cell-free components in dinoflagellate bioluminescence. The particulate activity: Scintillons; the soluble components: Luciferase, luciferin, and luciferin-binding protein. Methods in Enzymology, 1986, 133, 307-327.	1.0	23
153	Neurospora crassa: A Unique System for Studying Circadian Rhythms. , 1983, , 319-368.		61
154	Critical pulses of anisomycin drive the circadian oscillator inGonyaulax towards its singularity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1982, 148, 11-25.	1.5	57
155	Corrections -Biochemistry of Dinoflagellate Bioluminescence: Purification and Characterization of Dinoflagellate Luciferin from Pyrocystis Iunula. Biochemistry, 1981, 20, 5094-5094.	2.5	0
156	Dinoflagellate luciferin is structurally related to chlorophyll. FEBS Letters, 1981, 135, 273-276.	2.8	31
157	Biochemistry of dinoflagellate bioluminescence: the purification and characterization of dinoflagellate luciferin from Pyrocystis lunula. Biochemistry, 1981, 20, 983-989.	2.5	38
158	The effects of protein synthesis inhibitors on theGonyaulax clock. Journal of Comparative Physiology â–¡ B, 1980, 138, 1-8.	2.0	71
159	Circadian spontaneous bioluminescent glow and flashing ofGonyaulax polyedra. Journal of Comparative Physiology â–; B, 1980, 138, 19-26.	2.0	45
160	Comparison of the biosynthetic and biodegradative ornithine decarboxylases of Escherichia coli. Biochemistry, 1977, 16, 1580-1584.	2.5	91