
Jay C Dunlap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7936139/publications.pdf Version: 2024-02-01

IAV C DUNLAD

#	Article	IF	CITATIONS
1	Molecular Bases for Circadian Clocks. Cell, 1999, 96, 271-290.	28.9	2,658
2	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	27.8	1,528
3	A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10352-10357.	7.1	1,060
4	Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the Transcript. Cell, 1997, 91, 1043-1053.	28.9	817
5	Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science, 1994, 263, 1578-1584.	12.6	596
6	Lessons from the Genome Sequence of <i>Neurospora crassa</i> : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	6.6	572
7	Neurospora wc-1 and wc-2: Transcription, Photoresponses, and the Origins of Circadian Rhythmicity. Science, 1997, 276, 763-769.	12.6	508
8	White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency Promoter. Science, 2002, 297, 815-819.	12.6	490
9	Alternative Initiation of Translation and Time-Specific Phosphorylation Yield Multiple Forms of the Essential Clock Protein FREQUENCY. Cell, 1997, 89, 469-476.	28.9	347
10	Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell, 1995, 81, 1003-1012.	28.9	346
11	Interconnected Feedback Loops in the Neurospora Circadian System. Science, 2000, 289, 107-110.	12.6	336
12	Conformational Switching in the Fungal Light Sensor Vivid. Science, 2007, 316, 1054-1057.	12.6	328
13	The PAS Protein VIVID Defines a Clock-Associated Feedback Loop that Represses Light Input, Modulates Gating, and Regulates Clock Resetting. Cell, 2001, 104, 453-464.	28.9	321
14	Circadian Programs of Transcriptional Activation, Signaling, and Protein Turnover Revealed by Microarray Analysis of Mammalian Cells. Current Biology, 2002, 12, 551-557.	3.9	307
15	Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO Journal, 2009, 28, 1029-1042.	7.8	249
16	Molecular cloning of genes under control of the circadian clock in Neurospora. Science, 1989, 243, 385-388.	12.6	247
17	GENETIC AND MOLECULAR ANALYSIS OF CIRCADIAN RHYTHMS. Annual Review of Genetics, 1996, 30, 579-601.	7.6	246
18	Thermally Regulated Translational Control of FRQ Mediates Aspects of Temperature Responses in the Neurospora Circadian Clock. Cell, 1997, 89, 477-486.	28.9	235

#	Article	IF	CITATIONS
19	The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature, 1989, 339, 558-562.	27.8	228
20	Genetic and Molecular Analysis of Circadian Rhythms inNeurospora. Annual Review of Physiology, 2001, 63, 757-794.	13.1	219
21	Genetic Analysis of Circadian Clocks. Annual Review of Physiology, 1993, 55, 683-728.	13.1	213
22	How Temperature Changes Reset a Circadian Oscillator. , 1998, 281, 825-829.		209
23	The circadian clock of <i>Neurospora crassa</i> . FEMS Microbiology Reviews, 2012, 36, 95-110.	8.6	196
24	Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project. Advances in Genetics, 2007, 57, 49-96.	1.8	191
25	The Neurospora Circadian System. Journal of Biological Rhythms, 2004, 19, 414-424.	2.6	189
26	Quantitative Proteomics Reveals a Dynamic Interactome and Phase-Specific Phosphorylation in the Neurospora Circadian Clock. Molecular Cell, 2009, 34, 354-363.	9.7	186
27	Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5914-5919.	7.1	183
28	Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. Eukaryotic Cell, 2015, 14, 1073-1080.	3.4	182
29	Post-translational modifications in circadian rhythms. Trends in Biochemical Sciences, 2009, 34, 483-490.	7.5	170
30	Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes and Development, 2000, 14, 1353-1363.	5.9	164
31	The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes and Development, 2007, 21, 1494-1505.	5.9	158
32	Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature, 2003, 421, 948-952.	27.8	153
33	Circadian Oscillators: Around the Transcription–Translation Feedback Loop and on to Output. Trends in Biochemical Sciences, 2016, 41, 834-846.	7.5	147
34	Genetic and Molecular Analysis of Phytochromes from the Filamentous Fungus Neurospora crassa. Eukaryotic Cell, 2005, 4, 2140-2152.	3.4	142
35	Decoupling circadian clock protein turnover from circadian period determination. Science, 2015, 347, 1257277.	12.6	141
36	Physical interaction between VIVID and white collar complex regulates photoadaptation in <i>Neurospora</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16715-16720.	7.1	138

#	Article	IF	CITATIONS
37	Fully Codon-Optimized <i>luciferase</i> Uncovers Novel Temperature Characteristics of the <i>Neurospora</i> Clock. Eukaryotic Cell, 2008, 7, 28-37.	3.4	134
38	The Neurospora Checkpoint Kinase 2: A Regulatory Link Between the Circadian and Cell Cycles. Science, 2006, 313, 644-649.	12.6	132
39	Analysis of clock-regulated genes in <i>Neurospora</i> reveals widespread posttranscriptional control of metabolic potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16995-17002.	7.1	131
40	Fungal photobiology: visible light as a signal for stress, space and time. Current Genetics, 2015, 61, 275-288.	1.7	127
41	How fungi keep time: circadian system in Neurospora and other fungi. Current Opinion in Microbiology, 2006, 9, 579-587.	5.1	126
42	A Role for Casein Kinase 2 in the Mechanism Underlying Circadian Temperature Compensation. Cell, 2009, 137, 749-760.	28.9	125
43	The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17681-17686.	7.1	123
44	Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiology Spectrum, 2017, 5, .	3.0	121
45	Functional Analysis of the Aspergillus nidulans Kinome. PLoS ONE, 2013, 8, e58008.	2.5	120
46	Execution of the Circadian Negative Feedback Loop in Neurospora Requires the ATP-Dependent Chromatin-Remodeling Enzyme CLOCKSWITCH. Molecular Cell, 2007, 25, 587-600.	9.7	115
47	SIRT1 Is a Circadian Deacetylase for Core Clock Components. Cell, 2008, 134, 212-214.	28.9	111
48	Temperature-modulated Alternative Splicing and Promoter Use in the Circadian Clock Gene frequency. Molecular Biology of the Cell, 2005, 16, 5563-5571.	2.1	109
49	Structure of a Light-Activated LOV Protein Dimer That Regulates Transcription. Science Signaling, 2011, 4, ra50.	3.6	108
50	Roles for WHITE COLLAR-1 in Circadian and General Photoperception in <i>Neurospora crassa</i> . Genetics, 2003, 163, 103-114.	2.9	106
51	The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism, and Stress Resistance in Response to Light. MBio, 2013, 4, .	4.1	104
52	Closely watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophila. Trends in Genetics, 1990, 6, 159-165.	6.7	101
53	Neurospora illuminates fungal photoreception. Fungal Genetics and Biology, 2010, 47, 922-929.	2.1	101
54	Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Molecular Genetics and Genomics, 2005, 273, 137-149.	2.1	94

#	Article	IF	CITATIONS
55	Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Systems, 2018, 7, 613-626.e5.	6.2	93
56	Comparison of the biosynthetic and biodegradative ornithine decarboxylases of Escherichia coli. Biochemistry, 1977, 16, 1580-1584.	2.5	91
57	Long and short isoforms of <i>Neurospora</i> clock protein FRQ support temperatureâ€compensated circadian rhythms. FEBS Letters, 2007, 581, 5759-5764.	2.8	91
58	The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes and Development, 2005, 19, 2593-2605.	5.9	89
59	FRQ-Interacting RNA Helicase Mediates Negative and Positive Feedback in the Neurospora Circadian Clock. Genetics, 2010, 184, 351-361.	2.9	89
60	Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora crassa. Eukaryotic Cell, 2011, 10, 1553-1564.	3.4	89
61	CHD1 Remodels Chromatin and Influences Transient DNA Methylation at the Clock Gene frequency. PLoS Genetics, 2011, 7, e1002166.	3.5	84
62	Conserved RNA Helicase FRH Acts Nonenzymatically to Support the Intrinsically Disordered Neurospora Clock Protein FRQ. Molecular Cell, 2013, 52, 832-843.	9.7	83
63	Genome-Wide Characterization of Light-Regulated Genes in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1731-1745.	1.8	82
64	Analysis of Expressed Sequence Tags From Two Starvation, Time-of-Day-Specific Libraries of <i>Neurospora crassa</i> Reveals Novel Clock-Controlled Genes. Genetics, 2001, 157, 1057-1065.	2.9	82
65	The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Molecular Microbiology, 2007, 64, 923-937.	2.5	81
66	The <i>frequency</i> Gene Is Required for Temperature-Dependent Regulation of Many Clock-Controlled Genes in <i>Neurospora crassa</i> . Genetics, 2003, 164, 923-933.	2.9	81
67	Glyceraldehyde-3-phosphate Dehydrogenase Is Regulated on a Daily Basis by the Circadian Clock. Journal of Biological Chemistry, 1998, 273, 446-452.	3.4	79
68	Light and Clock Expression of the Neurospora Clock Gene <i>frequency</i> Is Differentially Driven by but Dependent on WHITE COLLAR-2. Genetics, 2002, 160, 149-158.	2.9	77
69	The Phospho-Code Determining Circadian Feedback Loop Closure and Output in Neurospora. Molecular Cell, 2019, 74, 771-784.e3.	9.7	74
70	The effects of protein synthesis inhibitors on theGonyaulax clock. Journal of Comparative Physiology â— _i B, 1980, 138, 1-8.	2.0	71
71	Eukaryotic circadian systems: cycles in common. Genes To Cells, 1999, 4, 01-10.	1.2	71
72	Genetic and Molecular Characterization of a Cryptochrome from the Filamentous Fungus Neurospora crassa. Eukaryotic Cell, 2010, 9, 738-750.	3.4	69

#	Article	IF	CITATIONS
73	A Nitrate-Induced frq-Less Oscillator in Neurospora crassa. Journal of Biological Rhythms, 2004, 19, 280-286.	2.6	65
74	Circadian Control Sheds Light on Fungal Bioluminescence. Current Biology, 2015, 25, 964-968.	3.9	65
75	Closing the circadian negative feedback loop: FRQ-dependent clearance of WC-1 from the nucleus. Genes and Development, 2008, 22, 3196-3204.	5.9	62
76	Neurospora WC-1 Recruits SWI/SNF to Remodel frequency and Initiate a Circadian Cycle. PLoS Genetics, 2014, 10, e1004599.	3.5	61
77	Neurospora crassa: A Unique System for Studying Circadian Rhythms. , 1983, , 319-368.		61
78	Circadian Rhythmicity by Autocatalysis. PLoS Computational Biology, 2006, 2, e96.	3.2	58
79	Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates. MBio, 2016, 7, .	4.1	58
80	Critical pulses of anisomycin drive the circadian oscillator inGonyaulax towards its singularity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1982, 148, 11-25.	1.5	57
81	Proteins in the Neurospora Circadian Clockworks. Journal of Biological Chemistry, 2006, 281, 28489-28493.	3.4	57
82	Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environmental Microbiology, 2016, 18, 5-20.	3.8	56
83	High-Throughput Production of Gene Replacement Mutants in Neurospora crassa. Methods in Molecular Biology, 2011, 722, 179-189.	0.9	55
84	Neurospora Clock-Controlled Gene 9 (ccg-9) Encodes Trehalose Synthase: Circadian Regulation of Stress Responses and Development. Eukaryotic Cell, 2002, 1, 33-43.	3.4	54
85	A High-Density Single Nucleotide Polymorphism Map for <i>Neurospora crassa</i> . Genetics, 2009, 181, 767-781.	2.9	54
86	From The Cover: Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2210-2215.	7.1	53
87	A Role for Id2 in Regulating Photic Entrainment of the Mammalian Circadian System. Current Biology, 2009, 19, 297-304.	3.9	53
88	High-Throughput Construction of Gene Deletion Cassettes for Generation of Neurospora crassa Knockout Strains. Methods in Molecular Biology, 2010, 638, 33-40.	0.9	51
89	The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3: Genes, Genomes, Genetics, 2017, 7, 129-142.	1.8	47
90	Alternative Use of DNA Binding Domains by the <i>Neurospora</i> White Collar Complex Dictates Circadian Regulation and Light Responses. Molecular and Cellular Biology, 2016, 36, 781-793.	2.3	46

#	Article	IF	CITATIONS
91	Circadian spontaneous bioluminescent glow and flashing ofGonyaulax polyedra. Journal of Comparative Physiology â—; B, 1980, 138, 19-26.	2.0	45
92	Common threads in eukaryotic circadian systems. Current Opinion in Genetics and Development, 1998, 8, 400-406.	3.3	45
93	The circadian system as an organizer of metabolism. Fungal Genetics and Biology, 2016, 90, 39-43.	2.1	45
94	Light sensing by opsins and fungal ecology: NOPâ€1 modulates entry into sexual reproduction in response to environmental cues. Molecular Ecology, 2018, 27, 216-232.	3.9	43
95	Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity. PLoS Genetics, 2015, 11, e1005215.	3.5	42
96	A Phylogenetically Conserved DNA Damage Response Resets the Circadian Clock. Journal of Biological Rhythms, 2009, 24, 193-202.	2.6	40
97	High-resolution spatiotemporal analysis of gene expression in real time: In vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genetics and Biology, 2012, 49, 681-683.	2.1	39
98	Biochemistry of dinoflagellate bioluminescence: the purification and characterization of dinoflagellate luciferin from Pyrocystis lunula. Biochemistry, 1981, 20, 983-989.	2.5	38
99	Circadian Clock-Specific Roles for the Light Response Protein WHITE COLLAR-2. Molecular and Cellular Biology, 2001, 21, 2619-2628.	2.3	38
100	Dissecting the Mechanisms of the Clock in Neurospora. Methods in Enzymology, 2015, 551, 29-52.	1.0	38
101	<i>period</i> -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the <i>Neurospora</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15707-15712.	7.1	37
102	The Fast-Evolving <i>phy-2</i> Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. MBio, 2016, 7, e02148.	4.1	37
103	Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Communication and Signaling, 2020, 18, 181.	6.5	36
104	An efficient method for gene disruption in Neurospora crassa. Molecular Genetics and Genomics, 1994, 242, 490-494.	2.4	34
105	Simulating Dark Expressions and Interactions of frq and wc-1 in the Neurospora Circadian Clock. Biophysical Journal, 2008, 94, 1221-1232.	0.5	34
106	Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Molecular Biology of the Cell, 2012, 23, 3079-3093.	2.1	33
107	Isolation and Analysis of the <i>arg-13</i> Gene of <i>Neurospora crassa</i> . Genetics, 1996, 143, 1163-1174.	2.9	32
108	Dinoflagellate luciferin is structurally related to chlorophyll. FEBS Letters, 1981, 135, 273-276.	2.8	31

#	Article	IF	CITATIONS
109	Fungal Functional Genomics: Tunable Knockout-Knock-in Expression and Tagging Strategies. Eukaryotic Cell, 2009, 8, 800-804.	3.4	31
110	Structure of the frequencyâ€interacting <scp>RNA</scp> helicase: a protein interaction hub for the circadianÂclock. EMBO Journal, 2016, 35, 1707-1719.	7.8	31
111	Analysis of Circadian Rhythms in Neurospora: Overview of Assays and Genetic and Molecular Biological Manipulation. Methods in Enzymology, 2005, 393, 3-22.	1.0	30
112	Light-Inducible System for Tunable Protein Expression in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2012, 2, 1207-1212.	1.8	29
113	A Pro- and Anti-inflammatory Axis Modulates the Macrophage Circadian Clock. Frontiers in Immunology, 2020, 11, 867.	4.8	29
114	Yes, circadian rhythms actually do affect almost everything. Cell Research, 2016, 26, 759-760.	12.0	25
115	Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. MBio, 2017, 8, .	4.1	25
116	A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in <i>Neurospora</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20102-20107.	7.1	24
117	Salad Days in the Rhythms Trade. Genetics, 2008, 178, 1-13.	2.9	24
118	[28] Cell-free components in dinoflagellate bioluminescence. The particulate activity: Scintillons; the soluble components: Luciferase, luciferin, and luciferin-binding protein. Methods in Enzymology, 1986, 133, 307-327.	1.0	23
119	Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa. Genetics, 2016, 204, 163-176.	2.9	23
120	Circadian biology: Clocks for the real world. Current Biology, 1999, 9, R633-R635.	3.9	22
121	A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genetics, 2018, 14, e1007192.	3.5	22
122	PHYSIOLOGY: Enhanced: Running a Clock Requires Quality Time Together. Science, 2006, 311, 184-186.	12.6	21
123	Modulation of Clock Gene Expression by the Transcriptional Coregulator Receptor Interacting Protein 140 (RIP140). Journal of Biological Rhythms, 2011, 26, 187-199.	2.6	18
124	Just-So Stories and Origin Myths: Phosphorylation and Structural Disorder in Circadian Clock Proteins. Molecular Cell, 2018, 69, 165-168.	9.7	18
125	The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Molecular Microbiology, 2002, 41, 897-909.	2.5	16

Neurospora Photoreceptors. , 2005, , 371-389.

#	Article	IF	CITATIONS
127	A Tool Set for the Genome-Wide Analysis of Neurospora crassa by RT-PCR. G3: Genes, Genomes, Genetics, 2015, 5, 2043-2049.	1.8	14
128	Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms. Journal of Biological Rhythms, 2018, 33, 99-105.	2.6	14
129	Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Applied Microbiology and Biotechnology, 2018, 102, 3849-3863.	3.6	14
130	New cloning vectors using benomyl resistance as a dominant marker for selection inNeurospora crassa and in other filamentous fungi. Experimental Mycology, 1989, 13, 299-302.	1.6	12
131	A fable of too much too fast. Nature, 2013, 495, 57-58.	27.8	12
132	Molecular Analysis of the Neurospora Clock: Cloning and Characterization of the frequency and period-4 Genes. Chronobiology International, 1992, 9, 231-239.	2.0	10
133	Aging Well with a Little Wine and a Good Clock. Cell, 2013, 153, 1421-1422.	28.9	10
134	A Kinetic Study of the Effects of Light on Circadian Rhythmicity of the frq Promoter of Neurospora crassa. Journal of Biological Rhythms, 2014, 29, 38-48.	2.6	10
135	Evaluating the circadian rhythm and response to glucose addition in dispersed growth cultures of Neurospora crassa. Fungal Biology, 2020, 124, 398-406.	2.5	10
136	CLOCK leaves its mark on histones. Trends in Biochemical Sciences, 2006, 31, 610-613.	7.5	9
137	PRD-2 directly regulates casein kinase I and counteracts nonsense-mediated decay in the Neurospora circadian clock. ELife, 2020, 9, .	6.0	9
138	Retinoic Acid Mediates Long-Paced Oscillations in Retinoid Receptor Activity: Evidence for a Potential Role for RIP140. PLoS ONE, 2009, 4, e7639.	2.5	8
139	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8
140	6 Photobiology and Circadian Clocks in Neurospora. , 2014, , 121-148.		8
141	Circadian rhythms: Phosphorylating the CLOCK. Cell Cycle, 2010, 9, 227-232.	2.6	7
142	Kinases and Circadian Clocks. Developmental Cell, 2004, 6, 160-161.	7.0	6
143	The Molecular Workings of the Neurospora Biological Clock. Novartis Foundation Symposium, 2008, , 184-202.	1.1	6
144	Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in <i>Neurospora</i> . MBio, 2021, 12, e0149321.	4.1	6

#	Article	IF	CITATIONS
145	Chapter 2 The genetic and molecular dissection of a prototypic circadian system. Progress in Brain Research, 1996, 111, 11-27.	1.4	5
146	A new slice on an old problem. Nature Neuroscience, 2000, 3, 305-306.	14.8	4
147	Bright to Dim Oscillatory Response of the Neurospora Circadian Oscillator. Journal of Biological Rhythms, 2014, 29, 49-59.	2.6	4
148	The Genetic Basis of the Circadian Clock: Identification of <i>frq</i> and FRQ as Clock Components in <i>Neurospora</i> . Novartis Foundation Symposium, 1995, 183, 3-25.	1.1	4
149	Evolution of the repression mechanisms in circadian clocks. Genome Biology, 2022, 23, 17.	8.8	4
150	Analysis of Circadian Output Rhythms of Gene Expression in Neurospora and Mammalian Cells in Culture. Methods in Enzymology, 2005, 393, 315-341.	1.0	3
151	Quantitative single molecule RNA-FISH and RNase-free cell wall digestion in Neurospora crassa. Fungal Genetics and Biology, 2021, 156, 103615.	2.1	3
152	Circadian rhythms: phosphorylating the CLOCK. Cell Cycle, 2010, 9, 231-2.	2.6	3
153	The molecular workings of the Neurospora biological clock. Novartis Foundation Symposium, 2003, 253, 184-98; discussion 102-9, 198-202, 281-4.	1.1	3
154	Clock genes and temperature effects. NeuroReport, 1998, 9, i.	1.2	2
155	CK2 and temperature compensation inNeurospora. Sleep and Biological Rhythms, 2009, 7, 162-171.	1.0	1
156	Editorial overview: Host–microbe interactions: fungi. Current Opinion in Microbiology, 2014, 20, v-vi.	5.1	1
157	Circadian Rhythms. , 2014, , 442-466.		1
158	Molecular Genetics of Circadian Rhythms inNeurosporaa Prototypic Circadian System. Handbook of Behavioral Neurobiology, 2001, , 335-350.	0.3	1
159	Corrections -Biochemistry of Dinoflagellate Bioluminescence: Purification and Characterization of Dinoflagellate Luciferin from Pyrocystis Iunula. Biochemistry, 1981, 20, 5094-5094.	2.5	0
160	Woody Hastings. Journal of Biological Rhythms, 2014, 29, 315-317.	2.6	0