Gaetano Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7936092/publications.pdf

Version: 2024-02-01

346 papers 14,359 citations

67 h-index 97 g-index

350 all docs

350 docs citations

350 times ranked 4769 citing authors

#	Article	IF	CITATIONS
1	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2022, 164, 110976.	2.6	3
2	High Surface Area Nanoporous-Crystalline Polymer Films. Macromolecules, 2022, 55, 2983-2990.	2.2	12
3	<i><c i="">â€perpendicular orientation in thin <scp>nanoporousâ€crystalline</scp>poly(2,6â€dimethylâ€1,4â€phenylene)oxide films. Polymers for Advanced Technologies, 2022, 33, 2344-2351.</c></i>	1.6	3
4	High surface area polymer films by co-crystallization with low-molecular-mass guest molecules. European Polymer Journal, 2022, , 111305.	2.6	1
5	Development and characterization of innovative carbon-based waste ashes/epoxy composites. Materials Today: Proceedings, 2021, 34, 133-139.	0.9	2
6	Control of Guest Thermal Release by Crystalline Host Orientation. ACS Applied Polymer Materials, 2021, 3, 949-955.	2.0	8
7	c-Perpendicular Orientation of Poly(ÊŸ-lactide) Films. Polymers, 2021, 13, 1572.	2.0	5
8	Planar Orientation and Transparency of Nanoporous-Crystalline Polymer Films. Macromolecules, 2021, 54, 6605-6611.	2.2	13
9	Melting of nanoporous-crystalline and co-crystalline solution cast films of poly(2,6-dimethyl-1,4-phenylene) oxide. Polymer, 2021, 228, 123935.	1.8	9
10	Axially oriented guest induced crystallization in syndiotactic polystyrene unstretched fibers. Polymer, 2021, 228, 123908.	1.8	9
11	High diffusivity dense films of a nanoporous-crystalline polymer. Polymer, 2021, 229, 124005.	1.8	18
12	Monomeric and Dimeric Carboxylic Acid in Crystalline Cavities and Channels of Delta and Epsilon Forms of Syndiotactic Polystyrene. Polymers, 2021, 13, 3330.	2.0	10
13	Mechanisms determining different planar orientations in PPO films crystallized by guest sorption. Polymer, 2021, 235, 124242.	1.8	11
14	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2021, 161, 110864.	2.6	14
15	Molecular Features Behind Formation of \hat{l}_{\pm} or \hat{l}^{2} Co-Crystalline and Nanoporous-Crystalline Phases of PPO. Frontiers in Chemistry, 2021, 9, 809850.	1.8	7
16	Dependence on Film Thickness of Guest-Induced c Perpendicular Orientation in PPO Films. Polymers, 2021, 13, 4384.	2.0	11
17	Guest induced transition from \hat{l}^2 to $\hat{l}\pm$ nanoporous crystalline forms of PPO. Polymer, 2020, 187, 122083.	1.8	10
18	Thermal shrinkage and heat capacity of monolithic polymeric physical aerogels. Polymer, 2020, 210, 123073.	1.8	4

#	Article	IF	Citations
19	Nanoporous Crystalline Composite Aerogels with Reduced Graphene Oxide. Molecules, 2020, 25, 5241.	1.7	3
20	Axial Orientation of Co-Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide Films. Polymers, 2020, 12, 2394.	2.0	9
21	Polymorphism of Poly(2,6-dimethyl-1,4-phenylene)oxide in Axially Stretched Films. Macromolecules, 2020, 53, 2287-2294.	2.2	17
22	Axially Oriented Nanoporous Crystalline Phases of Poly(2,6-dimethyl-1,4-phenylene)oxide. ACS Applied Polymer Materials, 2020, 2, 3518-3524.	2.0	16
23	Benzene-Induced Crystallization of PPO: A Combined Thermodynamic and Vibrational Spectroscopy Study. Industrial & Engineering Chemistry Research, 2020, 59, 5402-5411.	1.8	10
24	Antimicrobial release from cleaning poultices for the conservation and disinfection of stone surfaces. Applied Clay Science, 2020, 193, 105667.	2.6	4
25	Graphene Oxide and Oxidized Carbon Black as Catalyst for Crosslinking of Phenolic Resins. Polymers, 2019, 11, 1330.	2.0	9
26	Graphite functionalization by ball milling with sulfur. SN Applied Sciences, 2019, 1, 1.	1.5	3
27	Nanoporous-crystalline films of PPO with parallel and perpendicular polymer chain orientations. Polymer, 2019, 167, 193-201.	1.8	35
28	Edge-Oxidation of Graphites by Hydrogen Peroxide. Langmuir, 2019, 35, 2244-2250.	1.6	20
29	Catalytic Activity of Oxidized Carbon Waste Ashes for the Crosslinking of Epoxy Resins. Polymers, 2019, 11, 1011.	2.0	9
30	Chemical Stabilization of Hexanal Molecules by Inclusion as Guests of Nanoporous-Crystalline Syndiotactic Polystyrene Crystals. Macromolecules, 2019, 52, 2255-2264.	2.2	25
31	Processing and strain induced crystallization and reinforcement under strain of poly(1,4-cis-isoprene) from Ziegler–Natta catalysis, hevea brasiliensis, taraxacum kok-saghyz and partenium argentatum. Advanced Industrial and Engineering Polymer Research, 2019, 2, 1-12.	2.7	3
32	Release of Cationic Drugs from Charcoal. Materials, 2019, 12, 683.	1.3	2
33	Intercalation compounds of a smectite clay with an ammonium salt biocide and their possible use for conservation of cultural heritage. Heliyon, 2019, 5, e02991.	1.4	6
34	Two Nanoporous Crystalline Forms of Poly(2,6-dimethyl-1,4-phenylene)oxide and Related Co-Crystalline Forms. Macromolecules, 2019, 52, 9646-9656.	2.2	50
35	Packaging technology for improving shelfâ€life of fruits based on a nanoporous–crystalline polymer. Journal of Applied Polymer Science, 2018, 135, 46256.	1.3	12
36	Grapheneâ€Based Carbocatalysts for Thermoset Polymers and for Diastereoselective and Enantioselective Organic Synthesis. ChemCatChem, 2018, 10, 2350-2359.	1.8	9

#	Article	IF	Citations
37	Vibrational Spectra of Poly(ethylene terephthalate) Chains in the Mesomorphic Form. Macromolecular Chemistry and Physics, 2018, 219, 1700362.	1.1	2
38	Hexagonal rotator order of bound ionic surfactants and temperature triggered dispersion of carbon nanotubes. Carbon, 2018, 127, 228-235.	5.4	3
39	Etched Fibers of Syndiotactic Polystyrene with Nanoporous-Crystalline Phases. Macromolecules, 2018, 51, 6138-6148.	2.2	24
40	PLA Melt Stabilization by High-Surface-Area Graphite and Carbon Black. Polymers, 2018, 10, 139.	2.0	23
41	Green and Facile Esterification Procedure Leading to Crystalline-Functionalized Graphite Oxide. Langmuir, 2017, 33, 6819-6825.	1.6	7
42	Circularly polarized luminescence of syndiotactic polystyrene. Optical Materials, 2017, 73, 595-601.	1.7	23
43	Single-phase block copolymers by cross-metathesis of 1,4-cis-polybutadiene and 1,4-cis-polyisoprene. Polymer, 2017, 130, 143-149.	1.8	23
44	Efficient Modulation of Polyethylene Microstructure by Proper Activation of (α-Diimine)Ni(II) Catalysts: Synthesis of Well-Performing Polyethylene Elastomers. Macromolecules, 2017, 50, 6586-6594.	2.2	21
45	Oxidized Carbon Black as Catalyst for the Enamine Formation in Solventâ€Free Conditions: A Green Strategy to Build the Benzodiazepine Scaffold. ChemistrySelect, 2017, 2, 10559-10564.	0.7	9
46	Oxidized Carbon Black as an Activator of Transesterification Reactions under Solvent-Free Conditions. ACS Omega, 2017, 2, 7862-7867.	1.6	13
47	Catalytic Activity of Oxidized Carbon Black and Graphene Oxide for the Crosslinking of Epoxy Resins. Polymers, 2017, 9, 133.	2.0	11
48	Thermally stable, solvent resistant and flexible graphene oxide paper. RSC Advances, 2016, 6, 44522-44530.	1.7	9
49	Monolithic Polymeric Aerogels with Organically Modified Clays and Graphite Oxide Nanofillers. Macromolecular Symposia, 2016, 359, 32-43.	0.4	O
50	Intense Chiral Optical Phenomena in Racemic Polymers by Cocrystallization With Chiral Guest Molecules: A Brief Overview. Chirality, 2016, 28, 29-38.	1.3	3
51	Nanoporous Crystalline Polymer Materials for Environmental Applications. Macromolecular Symposia, 2016, 369, 19-25.	0.4	6
52	Nanoporous-crystalline poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) aerogels. Polymer, 2016, 105, 96-103.	1.8	36
53	Intercalation compounds of oxidized carbon black. RSC Advances, 2016, 6, 105565-105572.	1.7	18
54	Label-Free Vapor Selectivity in Poly(<i>p</i> -Phenylene Oxide) Photonic Crystal Sensors. ACS Applied Materials & Discrete Sensors. ACS Applied Materials & D	4.0	93

#	Article	IF	CITATIONS
55	Microporous-crystalline microfibers by eco-friendly guests: An efficient tool for sorption of volatile organic pollutants. Microporous and Mesoporous Materials, 2016, 232, 205-210.	2.2	22
56	Crystallinity and crystalline phase orientation of poly(1,4- <i>cis</i> -isoprene) from <i>Hevea brasiliensis</i> and <i>Taraxacum kok-saghyz</i> Polymers for Advanced Technologies, 2016, 27, 1082-1090.	1.6	30
57	Green Regio―and Enantioselective Aminolysis Catalyzed by Graphite and Graphene Oxide under Solventâ€Free Conditions. ChemCatChem, 2016, 8, 1915-1920.	1.8	17
58	Graphene oxide as a catalyst for ring opening reactions in amine crosslinking of epoxy resins. RSC Advances, 2016, 6, 23858-23865.	1.7	58
59	Cure reaction of epoxy resins catalyzed by graphite-based nanofiller. AIP Conference Proceedings, 2015, , .	0.3	2
60	Monolithic aerogels with nanoporous crystalline phases. AIP Conference Proceedings, 2015, , .	0.3	0
61	X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method. Vacuum, 2015, 119, 159-162.	1.6	39
62	Monolithic Polymeric Aerogels with VOCs Sorbent Nanoporous Crystalline and Water Sorbent Amorphous Phases. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1318-1326.	4.0	28
63	Ĵμ Form Gels and Aerogels of Syndiotactic Polystyrene. Macromolecules, 2015, 48, 1187-1193.	2.2	23
64	Intercalation and Exfoliation Compounds of Graphite Oxide with Quaternary Phosphonium Ions. Chemistry of Materials, 2015, 27, 1590-1596.	3.2	35
65	Nanoporous triclinic δ modification of syndiotactic polystyrene. Polymer, 2015, 63, 230-236.	1.8	39
66	Graphite oxide as catalyst for diastereoselective Mukaiyama aldol reaction of 2-(trimethylsilyloxy)furan in solvent free conditions. Journal of Molecular Catalysis A, 2015, 408, 237-241.	4.8	18
67	Optimization of graphene-based materials outperforming host epoxy matrices. RSC Advances, 2015, 5, 36969-36978.	1.7	71
68	Poly(<scp> </scp> -lactic acid): Uniplanar Orientation in Cocrystalline Films and Structure of the Cocrystalline Form with Cyclopentanone. Macromolecules, 2015, 48, 7513-7520.	2.2	26
69	Delamination of organically modified montmorillonite for reducing the filler networking with carbon black in poly(1,4-cis-isoprene) based nanocomposites. Applied Clay Science, 2015, 104, 8-17.	2.6	13
70	Synthesis of Reduced Graphite Oxide by a Novel Green Process Based on UV Light Irradiation. Science of Advanced Materials, 2015, 7, 2445-2451.	0.1	9
71	Regio―and Enantioselective Friedel–Crafts Reactions of Indoles to Epoxides Catalyzed by Graphene Oxide: A Green Approach. ChemSusChem, 2014, 7, 3279-3283.	3.6	43
72	Inverting the Diastereoselectivity of the Mukaiyama–Michael Addition with Graphite-Based Catalysts. ACS Catalysis, 2014, 4, 492-496.	5 . 5	51

#	Article	IF	CITATIONS
73	Syndiotactic polystyrene films with a cocrystalline phase including carvacrol guest molecules. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 657-665.	2.4	24
74	Delaminated and intercalated organically modified montmorillonite in poly(1,4-cis-isoprene) matrix. Indications of counterintuitive dynamic-mechanical behavior. Applied Clay Science, 2014, 97-98, 8-16.	2.6	23
75	Catalytic activity of graphite-based nanofillers on cure reaction of epoxy resins. Polymer, 2014, 55, 5612-5615.	1.8	56
76	Melt-Extruded Films of a Commercial Polymer with Intense Chiral Optical Response of Achiral Guests. Macromolecules, 2014, 47, 2616-2624.	2.2	9
77	Spectroscopic Investigation of Guest–Guest Interactions in the Nanoporous-Crystalline δand Îμ Forms of Syndiotactic Polystyrene. Journal of Physical Chemistry C, 2014, 118, 11774-11783.	1.5	11
78	Disordered Nanoporous Crystalline Modifications of Syndiotactic Polystyrene. Journal of Solution Chemistry, 2014, 43, 158-171.	0.6	19
79	Rayleigh scattering by graphene-oxide in syndiotactic polystyrene aerogels. Carbon, 2014, 77, 896-905.	5.4	22
80	Enantiomeric guests with the same signs of chiral optical responses. Chemical Communications, 2014, 50, 8185-8188.	2.2	13
81	Organoclays with hexagonal rotator order for the paraffinic chains of the compensating cation. Implications on the structure of clay polymer nanocomposites. Applied Clay Science, 2014, 87, 179-188.	2.6	20
82	Nâ€doped <scp>TiO₂</scp> /sâ€ <scp>PS</scp> aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1175-1181.	1.6	89
83	Sulfonated syndiotactic polystyrene: sorption of ionic liquid in the amorphous phase and of organic guests in the crystalline phase. Polymers for Advanced Technologies, 2013, 24, 56-61.	1.6	5
84	Racemic synthetic polymers and chirality. Rendiconti Lincei, 2013, 24, 217-226.	1.0	7
85	Layered double hydroxides with low Al content and new intercalate structures. Applied Clay Science, 2013, 71, 27-31.	2.6	5
86	Graphite oxide intercalation compounds with rotator hexagonal order in the intercalated layers. Carbon, 2013, 61, 395-403.	5.4	41
87	Syndiotactic Polystyrene Films with Different Uniplanar Orientations: Additional Information on Crystal Phase Transitions. Macromolecular Chemistry and Physics, 2013, 214, 41-45.	1.1	6
88	Control of guest transport in polymer films by structure and orientation of nanoporous-crystalline phases. Polymer, 2013, 54, 1671-1678.	1.8	23
89	On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS. Materials Chemistry and Physics, 2013, 141, 891-902.	2.0	8
90	Solubility and diffusivity of low molecular weight compounds in semi-crystalline poly-(2,6-dimethyl-1,4-phenylene)oxide: The role of the crystalline phase. Journal of Membrane Science, 2013, 443, 100-106.	4.1	39

#	Article	IF	Citations
91	Monolithic Aerogels Based on Poly(2,6-diphenyl-1,4-phenylene oxide) and Syndiotactic Polystyrene. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5493-5499.	4.0	13
92	Thermal Stability of Nanoporous Crystalline and Amorphous Phases of Poly(2,6-dimethyl-1,4-phenylene) Oxide. Macromolecules, 2013, 46, 449-454.	2.2	50
93	Uniplanar Orientations and Guest Exchange in PPO Cocrystalline Films. Macromolecules, 2013, 46, 3995-4001.	2.2	23
94	Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide. Frontiers in Chemistry, 2013, 1, 28.	1.8	16
95	Monolithic Nanoporous Crystalline Aerogels. Macromolecular Rapid Communications, 2013, 34, 1194-1207.	2.0	61
96	Gas sorption in poly-(2,6-dimethyl-1,4-phenylene)oxide containing nanoporous crystalline phases. , 2012, , .		0
97	A chiral co-crystalline form of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO). Journal of Materials Chemistry, 2012, 22, 11672.	6.7	40
98	Gas Sorption and Diffusion in Amorphous and Semicrystalline Nanoporous Poly(2,6-dimethyl-1,4-phenylene)oxide. Macromolecules, 2012, 45, 3604-3615.	2.2	66
99	Azobenzene isomerization in polymer co-crystalline phases. Polymer, 2012, 53, 2727-2735.	1.8	33
100	Infrared linear dichroism as a tool to evaluate volatile guest partition between amorphous and nanoporousâ€crystalline polymer phases. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1474-1479.	2.4	7
101	Chemically Reduced Graphite Oxide with Improved Shape Anisotropy. Journal of Physical Chemistry C, 2012, 116, 24809-24813.	1.5	71
102	Monolithic nanoporous–crystalline aerogels based on PPO. RSC Advances, 2012, 2, 12011.	1.7	40
103	Advanced materials based on polymer cocrystalline forms. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 305-322.	2.4	108
104	Nanoporous Crystalline Phases of Poly(2,6-Dimethyl-1,4-phenylene)oxide. Chemistry of Materials, 2011, 23, 3195-3200.	3.2	81
105	Chiral Optical Films Based on Achiral Chromophore Guests. Journal of the American Chemical Society, 2011, 133, 9872-9877.	6.6	34
106	Special Issue on Co-Crystalline and Nanoporous-Crystalline Polymers. Soft Materials, 2011, 9, 105-106.	0.8	1
107	Two Different Uniplanar–Axial Orientations of Syndiotactic Polystyrene Films. Macromolecules, 2011, 44, 5671-5681.	2.2	16
108	Aerogels and Polymorphism of Isotactic Poly(4-methyl-pentene-1). ACS Applied Materials & Samp; Interfaces, 2011, 3, 969-977.	4.0	49

#	Article	IF	CITATIONS
109	Ferroelectric co-crystalline polymers. Journal of Materials Chemistry, 2011, 21, 19074.	6.7	39
110	Polyethylene waxes by metallocenes. Polymers for Advanced Technologies, 2011, 22, 458-462.	1.6	16
111	Semicrystalline proton-conductive membranes with sulfonated amorphous phases. International Journal of Hydrogen Energy, 2011, 36, 8038-8044.	3.8	11
112	Polymer Nanoporous and Co-crystalline Phases. Materials Research Society Symposia Proceedings, 2011, 1366, 1.	0.1	0
113	Induced vibrational circular dichroism and polymorphism of syndiotactic polystyrene. Chirality, 2010, 22, E67-73.	1.3	26
114	Crystallization from the amorphous form of the nanoporous $\acute{\rm E}_{\rm P}$ form of syndiotactic polystyrene. Polymer, 2010, 51, 4599-4605.	1.8	10
115	Control of organoclay structure in hydrocarbon polymers. Polymers for Advanced Technologies, 2010, 21, 679-684.	1.6	21
116	Characterization of Semicrystalline Polymeric Materials by Atomistic Models. , 2010, , .		0
117	Structure and Sorption Properties of Syndiotactic Polystyrene Aerogels. ACS Symposium Series, 2010, , 131-147.	0.5	3
118	Monoclinic and Triclinic Î'-Clathrates of Syndiotactic Polystyrene. Macromolecules, 2010, 43, 8549-8558.	2.2	78
119	Channel Clathrate of Syndiotactic Polystyrene with <i>p</i> -nitroaniline. Macromolecules, 2010, 43, 1455-1466.	2.2	80
120	Chiro-optical Materials Based on a Racemic Polymer. Macromolecules, 2010, 43, 1882-1887.	2.2	23
121	Intercalate Co-Crystals of Syndiotactic Polystyrene with Benzyl methacrylate and Radiation-Induced Guest Polymerization. Macromolecules, 2010, 43, 10560-10567.	2.2	10
122	Hydrogen Adsorption by \hat{l}' and $\hat{l}\mu$ Crystalline Phases of Syndiotactic Polystyrene Aerogels. Macromolecules, 2010, 43, 8594-8601.	2.2	42
123	Three different co-crystalline phases of syndiotactic polystyrene with a nitroxide radical. CrystEngComm, 2010, 12, 3942.	1.3	33
124	Storage of hydrogen as a guest of a nanoporous polymeric crystalline phase. Physical Chemistry Chemical Physics, 2010, 12, 5369.	1.3	30
125	Molecular Sensing by Nanoporous Crystalline Polymers. Sensors, 2009, 9, 9816-9857.	2.1	75
126	Reinforcement of diene elastomers by organically modified layered silicates. E-Polymers, 2009, 9, .	1.3	2

#	Article	IF	Citations
127	Negatively Birefringent Polymer Films. Macromolecular Chemistry and Physics, 2009, 210, 2148-2152.	1.1	11
128	Understanding at molecular level of nanoporous and co-crystalline materials based on syndiotactic polystyrene. Progress in Materials Science, 2009, 54, 68-88.	16.0	72
129	Formation of clay intercalates with organic bilayers in hydrocarbon polymers. Polymers for Advanced Technologies, 2009, 20, 135-142.	1.6	31
130	Polymorphism of syndiotactic poly(p-fluoro-styrene). Polymer, 2009, 50, 1901-1907.	1.8	12
131	Polymeric Films with Three Different Orientations of Crystalline-Phase Empty Channels. Chemistry of Materials, 2009, 21, 3370-3375.	3.2	57
132	Geometry of Complex Molecular Motions of Guest Molecules in Polymers from Solid State 2H NMR. Macromolecules, 2009, 42, 4929-4931.	2.2	31
133	Syndiotactic Polystyrene Films with Sulfonated Amorphous Phase and Nanoporous Crystalline Phase. Chemistry of Materials, 2009, 21, 3191-3196.	3.2	38
134	Nanoporous Crystalline and Cross-Linked Polymeric Materials. Macromolecules, 2009, 42, 5566-5571.	2.2	6
135	Ordering Magnetic Molecules within Nanoporous Crystalline Polymers. Chemistry of Materials, 2009, 21, 4750-4752.	3.2	69
136	Syndiotatic Polystyrene Aerogels with \hat{l}^2 , \hat{l}^3 , and $\hat{l}\mu$ Crystalline Phases. Chemistry of Materials, 2009, 21, 1028-1034.	3.2	94
137	Dipolar guest orientation in polymer co-crystals and macroscopic films. CrystEngComm, 2009, 11, 2381.	1.3	39
138	Normal Vibrational Analysis of the Syndiotactic Polystyrene s($2/1$)2 Helix. Journal of Physical Chemistry B, 2009, 113, 5059-5071.	1.2	78
139	Chloroform sorption in nanoporous crystalline and amorphous phases of syndiotactic polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 8-15.	2.4	31
140	Processing, thermal stability and morphology of chiral sensing syndiotactic polystyrene films. Journal of Materials Chemistry, 2008, 18, 567-572.	6.7	41
141	Syndiotactic Polystyrene Aerogels: Adsorption in Amorphous Pores and Absorption in Crystalline Nanocavities. Chemistry of Materials, 2008, 20, 577-582.	3.2	96
142	Ethylene removal by sorption from polymeric crystalline frameworks. Journal of Materials Chemistry, 2008, 18, 1046.	6.7	48
143	Layers of Close-Packed Alternated Enantiomorphous Helices and the Three Different Uniplanar Orientations of Syndiotactic Polystyrene. Macromolecules, 2008, 41, 8632-8642.	2.2	47
144	Nanoporous Polymer Crystals with Cavities and Channels. Chemistry of Materials, 2008, 20, 3663-3668.	3.2	153

#	Article	IF	Citations
145	Guest Orientation in Uniplanar-Axial Polymer Host Films and in Co-Crystal Unit-Cell, Determined by Angular Distributions of Polarized Guest Fluorescence. Macromolecules, 2008, 41, 9156-9164.	2.2	62
146	Guest-Induced Syndiotactic Polystyrene Cocrystal Formation from \hat{I}^3 and \hat{I}^\pm Phases. Macromolecules, 2008, 41, 2683-2688.	2.2	25
147	Influence of Supercritical Carbon Dioxide Extraction Temperature on the Crystalline Structure and the Morphology of Syndiotactic Polystyrene Aerogels. Macromolecular Symposia, 2008, 273, 135-138.	0.4	2
148	Influence of Tacticity of Propylene Placement on Structure and Properties of Ethylene/Propylene Copolymers., 2007,, 313-341.		2
149	New Host Polymeric Framework and Related Polar Guest Cocrystals. Chemistry of Materials, 2007, 19, 3864-3866.	3.2	102
150	Uniplanar Orientations as a Tool To Assign Vibrational Modes of Polymer Chain. Macromolecules, 2007, 40, 3895-3897.	2.2	33
151	Photoisomerization patterns based on molecular complex phases of syndiotactic polystyrene. Journal of Materials Chemistry, 2007, 17, 531-535.	6.7	59
152	Normal Vibrational Analysis of a trans-Planar Syndiotactic Polystyrene Chain. Journal of Physical Chemistry B, 2007, 111, 6327-6335.	1.2	47
153	Detection and Memory of Nonracemic Molecules by a Racemic Host Polymer Film. Journal of the American Chemical Society, 2007, 129, 10992-10993.	6.6	101
154	Clay Delamination in Hydrocarbon Rubbers. Chemistry of Materials, 2007, 19, 2495-2499.	3.2	56
155	Fluorescence of Syndiotactic Polystyrene/Trimethylbenzene Clathrate and Intercalate Co-Crystals. Chemistry of Materials, 2007, 19, 6041-6046.	3.2	78
156	Thermal Transitions of $\hat{l}\mu$ Crystalline Phases of Syndiotactic Polystyrene. Macromolecules, 2007, 40, 9470-9474.	2.2	76
157	Syndiotactic Polystyrene Clathrates with Polar Guest Molecules. Chemistry of Materials, 2007, 19, 3302-3308.	3.2	65
158	Polymer/Gas Clathrates for Gas Storage and Controlled Release. Macromolecules, 2006, 39, 9166-9170.	2.2	48
159	Selective Molecularâ 'Complex Phase Formation of Syndiotactic Polystyrene with a Styrene Dimer. Macromolecules, 2006, 39, 9171-9176.	2.2	36
160	Anisotropic Guest Diffusion in the $\hat{\Gamma}$ Crystalline Host Phase of Syndiotactic Polystyrene: \hat{A} Transport Kinetics in Films with Three Different Uniplanar Orientations of the Host Phase. Chemistry of Materials, 2006, 18, 2205-2210.	3.2	66
161	Syndiotactic Polystyrene Physical Gels:Â Guest Influence on Structural Order in Molecular Complex Domains and Gel Transparency. Macromolecules, 2006, 39, 7578-7582.	2.2	38
162	Coated long-period fiber gratings as high-sensitivity optochemical sensors. Journal of Lightwave Technology, 2006, 24, 1776-1786.	2.7	91

#	Article	IF	CITATIONS
163	Control of Crystal Size and Orientation in Polymer Films by Hostâ ⁻ 'Guest Interactions. Macromolecules, 2006, 39, 4820-4823.	2.2	32
164	Oriented Nanoporous Hostl´ Phases of Syndiotactic Polystyrene as a Tool for Spectroscopic Investigation of Guest Molecules. Macromolecular Symposia, 2006, 234, 102-110.	0.4	5
165	rac-[CH2(3-tert-butyl-1-indenyl)2]ZrCl2/MAO in the Copolymerization of Olefins and Dienes. Macromolecular Symposia, 2006, 234, 128-138.	0.4	10
166	FTIR spectra of pure helical crystalline phases of syndiotactic polystyrene. Polymer, 2006, 47, 234-242.	1.8	77
167	Infrared spectra and thermal reactivity of ethene copolymers containing 1,2-cyclopropane units. Polymer, 2006, 47, 2274-2279.	1.8	3
168	Crystalline structures of intercalate molecular complexes of syndiotactic polystyrene with two fluorescent guests: 1,3,5-Trimethyl-benzene and 1,4-dimethyl-naphthalene. Polymer, 2006, 47, 2402-2410.	1.8	112
169	Syndiotactic polystyrene thin film as sensitive layer for an optoelectronic chemical sensing device. Sensors and Actuators B: Chemical, 2005, 109, 177-184.	4.0	68
170	Thermal crosslinking of ethene copolymers containing 1,2-cyclopropane units. Polymer, 2005, 46, 2847-2853.	1.8	7
171	Polymorphism and mechanical properties of syndiotactic polystyrene films. Polymer, 2005, 46, 11435-11441.	1.8	33
172	A chloroform transducer based on sPS-δ-coated quartz-crystal microbalance for gaseous environment. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 31-37.	2.4	11
173	Optical Recording Materials Based on Photoisomerization of Guest Molecules of a Polymeric Crystalline Host Phase. Advanced Materials, 2005, 17, 1166-1168.	11.1	84
174	Aerogels with a Microporous Crystalline Host Phase. Advanced Materials, 2005, 17, 1515-1518.	11.1	182
175	2H NMR Study of Aromatic Guest Dynamics in Clathrate Phases of Syndiotactic Polystyrene. Macromolecular Chemistry and Physics, 2005, 206, 715-724.	1.1	27
176	Polymorphism of syndiotactic polystyrene: î³ phase crystallization induced by bulky non-guest solvents. Polymer, 2005, 46, 9549-9554.	1.8	65
177	A Clear-Cut Experimental Method to Discriminate between In-Plane and Out-of-Plane Molecular Transition Moments. Journal of the American Chemical Society, 2005, 127, 13114-13115.	6.6	52
178	Polymeric Films with Three Different Uniplanar Crystalline Phase Orientations. Macromolecules, 2005, 38, 10089-10094.	2.2	73
179	Orientation and Microenvironment of Naphthalene Guest in the Host Nanoporous Phase of Syndiotactic Polystyrene. Macromolecules, 2005, 38, 3696-3702.	2.2	66
180	An Intercalate Molecular Complex of Syndiotactic Polystyrene. Macromolecules, 2005, 38, 6965-6971.	2,2	121

#	Article	IF	Citations
181	Molecular Modeling of Stereo- and Regioselectivity of Group 4 Heterocenes in the Polymerization of Propene. Macromolecules, 2005, 38, 3973-3976.	2.2	14
182	Activity and Microstructure Variations with Temperature in Conjugated Diene Polymerizations Catalyzed by CpTiCl3â^'MAO. Macromolecules, 2005, 38, 6327-6335.	2.2	13
183	Hostâ^'Guest Interactions and Crystalline Structure Evolution in Clathrate Phases Formed by Syndiotactic Polystyrene and 1,2-Dichloroethane:Â A Two-Dimensional FTIR Spectroscopy Investigation. Macromolecules, 2005, 38, 6079-6089.	2.2	35
184	Optical chemo-sensor based on long period gratings coated with /spl delta/ form syndiotactic polystyrene. IEEE Photonics Technology Letters, 2005, 17, 1713-1715.	1.3	53
185	Thermoplastic Molecular Sieves: New Polymeric Materials for Molecular Packaging. ACS Symposium Series, 2005, , 171-186.	0.5	0
186	High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. Applied Physics Letters, 2005, 87, 234105.	1.5	97
187	(E)â^'(Z) Selectivity in the Polymerization of 2-Butene Promoted by Ni(II) Brookhart-Type Catalysts. Macromolecules, 2005, 38, 2072-2075.	2.2	16
188	Crystalline Organization in Syndiotactic Polystyrene Gels and Aerogels. Macromolecular Symposia, 2005, 222, 247-252.	0.4	0
189	Do New Century Catalysts Unravel the Mechanism of Stereocontrol of Old Zieglerâ 'Natta Catalysts?. Accounts of Chemical Research, 2004, 37, 231-241.	7.6	232
190	Special Issue of Macromolecular Chemistry and Physics Dedicated to Prof. Adolfo Zambelli, on the Occasion of his 70th Birthday. Macromolecular Chemistry and Physics, 2004, 205, 283-283.	1.1	1
191	Do New Century Catalysts Unravel the Mechanism of Stereocontrol of Old Ziegler—Natta Catalysts?. ChemInform, 2004, 35, no.	0.1	0
192	Stereoselectivity and chemoselectivity in Ziegler–Natta polymerization of conjugated dienes. 2. Mechanism for 1,2 syndiotactic polymerization of diene monomers with high energy s-cis η4 coordination. Polymer, 2004, 45, 467-485.	1.8	24
193	Gas sorption and transport in syndiotactic polystyrene with nanoporous crystalline phase. Polymer, 2004, 45, 429-436.	1.8	80
194	Thermal Behavior of Syndiotactic Polystyrene/1,2â€Dichloroethane Gels and Stoichiometry of Polymerâ€Solvent Compounds. Soft Materials, 2004, 2, 47-56.	0.8	6
195	Perpendicular Chain Axis Orientation in s-PS Films:Â Achievement by Guest-Induced Clathrate Formation and Maintenance after Transitions toward Helical and Trans-Planar Polymorphic Forms. Macromolecules, 2004, 37, 8043-8049.	2.2	53
196	Perpendicular Orientation of Host Polymer Chains in Clathrate Thick Films. Macromolecules, 2004, 37, 3071-3076.	2.2	58
197	High Selectivity in Polymerization of (Z)-1,3-Pentadiene, with the CpTiCl3â^'MAO Catalytic System, Generated by Backbiting Coordinations of the Growing Polydienyl Chain. Macromolecules, 2004, 37, 2016-2020.	2.2	14
198	Clathrate Phases of Styrene/p-Methylstyrene co-Syndiotactic Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 859-867.	1.1	22

#	Article	IF	Citations
199	Polymeric sensing films absorbing organic guests into a nanoporous host crystalline phase. Sensors and Actuators B: Chemical, 2003, 92, 255-261.	4.0	103
200	Evaluation of the Amount and Composition of the Polymer-Rich and Polymer-Poor Phases of Syndiotactic Polystyrene Gels with Binary Solvent Mixtures. Macromolecules, 2003, 36, 5742-5750.	2.2	28
201	Physical Gelation of Syndiotactic Polystyrene in the Presence of Large Molar Volume Solvents Induced by Volatile Guests of Clathrate Phases. Macromolecules, 2003, 36, 1713-1716.	2.2	37
202	Polymorphic Behavior of Syndiotactic Poly(p-chlorostyrene) and Styrene/p-Chlorostyrene Cosyndiotactic Random Copolymers. Macromolecules, 2003, 36, 7577-7584.	2.2	25
203	Chlorinated Guest Orientation and Mobility in Clathrate Structures Formed with Syndiotactic Polystyrene. Macromolecules, 2003, 36, 8695-8703.	2.2	67
204	E Stereoregular 1,1 and 1,3 Constitutional Units from 1,3-Butadiene in Copolymerizations Catalyzed by a Highly Hindered C2 Symmetric Metallocene. Journal of the American Chemical Society, 2003, 125, 4799-4803.	6.6	41
205	Butadiene Insertion and Constitutional Units in Ethene Copolymerizations byC2-Symmetric Metallocenes. Macromolecules, 2003, 36, 9067-9074.	2.2	41
206	Crystalline orientation and molecular transport properties in nanoporous syndiotactic polystyrene films. Macromolecular Symposia, 2002, 185, 65-75.	0.4	29
207	Crystalline Orientation in Syndiotactic Polystyrene Cast Films. Macromolecules, 2002, 35, 5854-5860.	2.2	122
208	Probing by Time-Resolved FTIR Spectroscopy Mass Transport, Molecular Interactions, and Conformational Ordering in the System Chloroformâ^Syndiotactic Polystyrene. Macromolecules, 2002, 35, 2296-2304.	2.2	88
209	Influence of Regio- and Stereoregularity of Propene Insertion on Crystallization Behavior and Elasticity of Etheneâ 'Propene Copolymers. Journal of the American Chemical Society, 2002, 124, 1566-1567.	6.6	23
210	Stereoselective Cyclopropanation by Cyclocopolymerization of Butadiene. Journal of the American Chemical Society, 2002, 124, 3502-3503.	6.6	56
211	Site Chirality as a Messenger in Chain-End Stereocontrolled Propene Polymerization. Journal of the American Chemical Society, 2002, 124, 13368-13369.	6.6	96
212	Crystalline phase orientation in biaxially stretched isotactic polypropylene films. Macromolecular Symposia, 2002, 185, 53-63.	0.4	17
213	Clathrate Phase in Syndiotactic Polystyrene Gels. Macromolecules, 2002, 35, 2243-2251.	2.2	76
214	Anisotropic Diffusion of Small Penetrants in the δ Crystalline Phase of Syndiotactic Polystyrene: A Molecular Dynamics Simulation Study. Chemistry of Materials, 2002, 14, 2977-2982.	3.2	75
215	A possible unified mechanism of like and unlike chain-end stereocontrol for primary propene-coordinated polymerizations. Macromolecular Chemistry and Physics, 2002, 203, 1564-1572.	1.1	8
216	Shape and Volume of Cavities in Thermoplastic Molecular Sieves Based on Syndiotactic Polystyrene. Chemistry of Materials, 2001, 13, 1506-1511.	3.2	174

#	Article	IF	Citations
217	Stereoselectivity and Chemoselectivity in Zieglerâ'Natta Polymerizations of Conjugated Dienes. 1. Monomers with Low-Energy s-Cisl·4Coordination§. Macromolecules, 2001, 34, 7952-7960.	2.2	44
218	A Theoretical Study of Syndiospecific Styrene Polymerization with Cp-Based and Cp-Free Titanium Catalysts. 2. Mechanism of Chain-End Stereocontrol. Macromolecules, 2001, 34, 5379-5385.	2.2	60
219	Polyethylene Unit Cell and Crystallinity Variations as a Consequence of Different Cross-Linking Processes. Macromolecules, 2001, 34, 5175-5179.	2.2	46
220	Clathrates with tetrahydrofuran of styrene-p-methyl styrene co-syndiotactic copolymers. Macromolecular Symposia, 2001, 166, 165-172.	0.4	3
221	1,2-dichloroethane conformation and molecular organization in syndiotactic polystyrene gels. Macromolecular Symposia, 2001, 166, 109-116.	0.4	0
222	Ab Initio and Molecular Mechanics Study of Conformational Selectivity of Chlorinated Compounds Adsorbed in the Clathrate Phase of Syndiotactic Polystyrene. The Role of Electrostatic Host-Guest Interactions. Macromolecular Theory and Simulations, 2001, 10, 349-354.	0.6	6
223	Pseudo-Hexagonal Crystallinity in Ethene-Styrene Random Copolymers. Macromolecular Chemistry and Physics, 2001, 202, 382-387.	1.1	7
224	Theoretical Study of Syndiospecific Styrene Polymerization with Cp-Based and Cp-Free Titanium Catalysts. 1. Mechanism of Chain Propagation. Macromolecules, 2001, 34, 2459-2468.	2.2	50
225	Pseudo-Hexagonal Crystallinity in Ethene-Styrene Random Copolymers. Macromolecular Chemistry and Physics, 2001, 202, 382-387.	1.1	1
226	A Density Functional Theory Study of the Syndiotactic-Specific Polymerization of Styrene. , 2001, , 299-306.		5
227	Influence of 1,3-Diethers on the Stereospecificity of Propene Polymerization by Supported Zieglerâ''Natta Catalysts. A Theoretical Investigation on Their Adsorption on (110) and (100) Lateral Cuts of MgCl2Platelets. Macromolecules, 2000, 33, 1134-1140.	2.2	82
228	Mechanism of Unlike Stereoselectivity in 1-Alkene Primary Insertions: Â Syndiospecific Propene Polymerization by Brookhart-Type Nickel (II) Catalysts. Organometallics, 2000, 19, 1343-1349.	1.1	28
229	Spectroscopic Investigation of Hostâ [^] Guest Interactions into Clathrate Phases of Syndiotactic Polystyrene Containing Chlorinated Compounds. Macromolecules, 2000, 33, 143-149.	2.2	49
230	Geometry and Stability of Titanium Chloride Species Adsorbed on the (100) and (110) Cuts of the MgCl2Support of the Heterogeneous Zieglerâ ⁻ Natta Catalysts. Macromolecules, 2000, 33, 8953-8962.	2.2	127
231	Thermoplastic Molecular Sieves. Chemistry of Materials, 2000, 12, 363-368.	3.2	116
232	Reactivity of Zand Elsomers, Growing Chain Isomerization, and Chain Transfer Reactions in Ethene/2-Butene Copolymerization by Metallocene-Based Catalysts. Macromolecules, 2000, 33, 4647-4659.	2.2	22
233	Crystal structure of the clathrate δform of syndiotactic polystyrene containing 1,2-dichloroethane. Polymer, 1999, 40, 2103-2110.	1.8	192
234	Regeneration of nanoporous crystalline syndiotactic polystyrene by supercritical CO2. Journal of Applied Polymer Science, 1999, 74, 2077-2082.	1.3	101

#	Article	IF	Citations
235	Pseudohexagonal crystallinity and thermal and tensile properties of ethene-propene copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1095-1103.	2.4	21
236	Isothermal Guest Desorption from Crystalline and Amorphous Phases of Syndiotactic Polystyrene. Macromolecules, 1999, 32, 2770-2776.	2.2	61
237	(E)-(Z) Selectivity in 2-Butene Copolymerization by Group 4 Metallocenes. A Combined Density Functional Theory and Molecular Mechanics Study. Journal of the American Chemical Society, 1999, 121, 8651-8652.	6.6	28
238	A Possible Interpretation of the Nonlinear Propagation Rate Laws for Insertion Polymerizations:Â A Kinetic Model Based on a Single-Center, Two-State Catalyst. Macromolecules, 1999, 32, 2104-2109.	2.2	31
239	Chemical separations by nanoporous crystalline samples of syndiotactic polystyrene. Macromolecular Symposia, 1999, 138, 131-137.	0.4	9
240	A Preliminary Study of Host-Guest Interactions in Polymeric Clathrates – An Ab Initio Study of the Model Complexes Benzene/X2 (X = F, Cl, Br, I). European Journal of Inorganic Chemistry, 1998, 1998, 1513-1517.	1.0	8
241	Chemoselective mechanism of (Z)-1,3-pentadiene polymerization in the presence of cyclopentadienyltitanium trichloride and methylaluminoxane. Macromolecular Chemistry and Physics, 1998, 199, 149-154.	1.1	20
242	Sub-Tg annealing of the clathrate \hat{l}' form of syndiotactic polystyrene. Macromolecular Chemistry and Physics, 1998, 199, 2671-2675.	1.1	26
243	Structural variations in random copolymers of tetrafluoroethylene with kind and content of comonomer units. Polymer, 1998, 39, 3205-3209.	1.8	17
244	Influence of π-Ligand Substitutions on the Regiospecificity and Stereospecificity in Isospecific Zirconocenes for Propene Polymerization. A Molecular Mechanics Analysis. Macromolecules, 1998, 31, 3431-3438.	2.2	53
245	Guest Conformation and Diffusion into Amorphous and Emptied Clathrate Phases of Syndiotactic Polystyrene. Macromolecules, 1998, 31, 1329-1334.	2.2	114
246	Mechanisms of Propagation and Termination Reactions in Classical Heterogeneous Zieglerâ^'Natta Catalytic Systems:Â A Nonlocal Density Functional Study. Journal of the American Chemical Society, 1998, 120, 2428-2436.	6.6	109
247	Molecular Mechanics and Stereospecificity in Zieglerâ^'Natta 1,2 and Cis-1,4 Polymerizations of Conjugated Dienes. Macromolecules, 1997, 30, 677-684.	2.2	43
248	Crystal Structure of the Emptied Clathrate Form (Î'e Form) of Syndiotactic Polystyrene. Macromolecules, 1997, 30, 4147-4152.	2.2	332
249	Relationship between Regiospecificity and Type of Stereospecificity in Propene Polymerization with Zirconocene-Based Catalysts1. Journal of the American Chemical Society, 1997, 119, 4394-4403.	6.6	102
250	Vapor sorption in emptied clathrate samples of syndiotactic polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 133-140.	2.4	125
251	Evaluation by Fourier Transform Infrared Spectroscopy of the different crystalline forms in syndiotactic polystyrene samples. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1055-1066.	2.4	88
252	Thermal Transitions of Polyacrylonitrile Fibers. Macromolecules, 1996, 29, 1830-1832.	2.2	25

#	Article	IF	Citations
253	Molecular Organization in the Pseudo-hexagonal Crystalline Phase of Ethyleneâ 'Propylene Copolymers. Macromolecules, 1996, 29, 7141-7148.	2.2	58
254	A Density Functional and Molecular Mechanics Study Of \hat{l}^2 -Hydrogen Transfer in Homogeneous Zieglerâ Natta Catalysis. Macromolecules, 1996, 29, 2729-2737.	2.2	78
255	Conformational Disorder in the Pseudohexagonal Form of Atactic Polyacrylonitrile. Macromolecules, 1996, 29, 8852-8861.	2.2	48
256	High-Resolution Solid State 13C Nuclear Magnetic Resonance Spectrum of Form I of Syndiotactic Poly (1-butene). Macromolecules, 1996, 29, 471-472.	2.2	15
257	Doubly Bridgedansa-Zirconocenes Based on the Norbornadiene Skeleton: A Quantum Mechanical and Molecular Mechanics Study. Organometallics, 1996, 15, 2254-2263.	1.1	19
258	Back-Skip of the Growing Chain at Model Complexes for the Metallocene Polymerization Catalysis. Macromolecules, 1996, 29, 4834-4845.	2.2	91
259	Polymorphism of syndiotactic poly(p-methylstyrene): oriented samples. Polymer, 1996, 37, 5247-5253.	1.8	39
260	Structural changes induced by thermal treatments on emptied and filled clathrates of syndiotactic polystyrene. Macromolecular Chemistry and Physics, 1995, 196, 2795-2808.	1.1	132
261	Conformational analysis of highly extended poly(ethylene terephthalate) chains by Monte Carlo calculations. Macromolecular Theory and Simulations, 1995, 4, 165-176.	0.6	11
262	Evaluation of the amount of defects in the comonomer alternation included in the crystal phase for ethylene–tetrafluoroethylene and ethylene–chlorotrifluoroethylene alternating copolymers. Journal of Applied Polymer Science, 1995, 56, 271-278.	1.3	12
263	Low temperature melting behavior of CO2 crystallized modified PETs. Polymer Engineering and Science, 1995, 35, 506-512.	1.5	21
264	Evaluation of the orientation coefficient for the c axis in poly(ethylene terephthalate) fibers. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1917-1924.	2.4	5
265	Influence of constitutional defects on polymorphic behaviour and properties of alternating ethylene-tetrafluoroethylene copolymer. Polymer, 1995, 36, 967-973.	1.8	26
266	Crystal structure of syndiotactic poly (4-methyl-1-pentene). Polymer, 1995, 36, 3619-3624.	1.8	21
267	Crystal Structure of Form III of Syndiotactic Poly(p-methylstyrene). Macromolecules, 1995, 28, 5507-5511.	2.2	26
268	Thermal and Structural Characterization of Poly(methylene-1,3-cyclopentane) Samples of Different Microstructures. Macromolecules, 1995, 28, 2383-2388.	2.2	48
269	Conformational Analysis of Poly(methylene-1,3-cyclopentylene) and Chain Conformation in the Crystalline Phase. Macromolecules, 1995, 28, 7355-7362.	2.2	18
270	Effects of p-Methylstyrene Comonomeric Units on the Polymorphic Behavior of Syndiotactic Polystyrene. Macromolecules, 1995, 28, 6508-6515.	2.2	58

#	Article	IF	CITATIONS
271	Molecular mechanics and mechanisms of regulation of the stereospecificity in Zieglerâ€Natta catalysis. Macromolecular Symposia, 1995, 89, 307-319.	0.4	10
272	Models for the Explanation of the Stereospecific Behaviour of Ziegler — Natta Catalysts. , 1995, , 237-249.		15
273	Effects of distortional components in biaxial stretching of poly (ethylene terephthalate) sheets on dimensional stability and structure. Journal of Materials Science, 1994, 29, 3151-3160.	1.7	3
274	Conformational and packing energy of the crystalline \hat{l}_{\pm} modification of syndiotactic polystyrene. European Polymer Journal, 1994, 30, 1173-1177.	2.6	48
275	Crystallization of poly(ethylene terephthalate) (PET) from the oriented mesomorphic form. Journal of Applied Polymer Science, 1994, 52, 875-885.	1.3	16
276	Allyltrimethylsilane polymers from metallocene catalysts: tacticity and structural characterization. Polymer, 1994, 35, 4648-4655.	1.8	21
277	Enantioselectivity in the Regioirregular Placements and Regiospecificity in the Isospecific Polymerization of Propene with Homogeneous Ziegler-Natta Catalysts. Journal of the American Chemical Society, 1994, 116, 2988-2995.	6.6	103
278	Influence of the antimony catalyst remnants on the melt crystallization of PET. Journal of Applied Polymer Science, 1993, 48, 1997-2001.	1.3	9
279	On the structure of the mesomorphic form of syndiotactic polystyrene. Die Makromolekulare Chemie, 1993, 194, 1335-1345.	1.1	77
280	Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal (.alpha.) crystalline form. Macromolecules, 1993, 26, 3772-3777.	2.2	102
281	Model catalytic sites for olefin polymerization and diastereoselectivity in the cyclopolymerization of 1,5-hexadiene. Macromolecules, 1993, 26, 260-267.	2.2	81
282	Molecular mechanics and the polymerization mechanism of homogeneous and heterogeneous Zieglerâ€Natta catalysts. Makromolekulare Chemie Macromolecular Symposia, 1993, 69, 237-246.	0.6	10
283	Chain conformation and unit cell in the crystalline phase of syndiotactic poly(4-methyl-1-pentene). Macromolecules, 1992, 25, 6938-6942.	2.2	20
284	Polymorphism in polymers. , 1992, , 183-217.		91
285	On the mesomorphic form of poly(ethylene terephthalate). Macromolecules, 1992, 25, 2490-2497.	2.2	54
286	On the crystal structure of the orthorhombic form of syndiotactic polystyrene. Polymer, 1992, 33, 1423-1428.	1.8	252
287	Fourier-transform analysis of models for the orthorhombic crystal phase of the alternating ethylene-tetrafluoroethylene copolymer. Polymer, 1992, 33, 22-26.	1.8	18
288	X-ray diffraction, conformational analysis and stereoregularity of a crystalline poly(3-methyl-1,) Tj ETQq0 0 0 rgB	Γ/Qverlocl	₹ 10 Tf 50 62

#	Article	IF	Citations
289	Structural analogies between homogeneous and heterogeneous catalysts for the stereospecific polymerization of 1-alkenes. Journal of Molecular Catalysis, 1992, 74, 433-442.	1.2	40
290	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 549-558.	1.1	8
291	Crystal structure of the form I of syndiotactic poly(1-butene). Die Makromolekulare Chemie, 1992, 193, 1351-1358.	1.1	30
292	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 2413-2420.	1.1	13
293	Polymorphism and chain conformations in the crystalline forms of syndiotactic poly(1-butene). Macromolecules, 1991, 24, 5645-5650.	2.2	43
294	A possible model for the stereospecificity in the syndiospecific polymerization of propene with group 4a metallocenes. Macromolecules, 1991, 24, 1784-1790.	2.2	154
295	Crystal Structure of the α-Form of Syndiotactic Polystyrene. Polymer Journal, 1991, 23, 1435-1442.	1.3	170
296	Fenomeni di ordine-disordine nelle forme polimorfe cristalline $\hat{l}\pm$ e \hat{l}^2 del polistirene sindiotattico. Rendiconti Lincei, 1991, 2, 227-237.	1.0	10
297	Models for the stereospecificity in homogeneous and heterogeneous Ziegler-Natta polymerizations. Progress in Polymer Science, 1991, 16, 239-257.	11.8	75
298	Mechanism of monomer insertion for heterogeneous isospecific Ziegler-Natta catalytic models. European Polymer Journal, 1991, 27, 45-54.	2.6	32
299	Effect of moisture on the crystallization behavior of PET from the quenched amorphous phase. Journal of Applied Polymer Science, 1991, 43, 1087-1089.	1.3	19
300	A model for the homogeneous isospecific Ziegler-Natta polymerization of olefins: Enantioselectivity in the deuteration and deuteriooligomerization of 1-alkenes. Chirality, 1991, 3, 299-306.	1.3	20
301	On the effects of methyl substituents on chelating ligands in models for homogeneous isospecific Ziegler-Natta catalysis. Polymer, 1991, 32, 1329-1335.	1.8	53
302	Effects of blending on the polymorphic behavior of melt-crystallized syndiotactic polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 265-271.	2.4	80
303	Different solvent stability of the crystalline polymorphic forms of syndiotactic polystyrene. Journal of Materials Science Letters, 1991, 10, 1084-1087.	0.5	50
304	Fourier transform infrared spectroscopy of the polymorphic forms of syndiotactic polystyrene. Die Makromolekulare Chemie, 1990, 191, 2111-2119.	1.1	89
305	Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules, 1990, 23, 1539-1544.	2.2	507
306	Possible model for chain end control of stereoregularity in the isospecific homogeneous Ziegler-Natta polymerization. Polymer, 1990, 31, 530-537.	1.8	59

#	Article	IF	CITATIONS
307	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 827-835.	1.1	36
308	Structural characterization of vinylidene fluoride/vinyl fluoride copolymers. Die Makromolekulare Chemie, 1989, 190, 2203-2210.	1.1	13
309	Solid-state high-resolution 13C NMR spectra of syndiotactic polystyrene. Die Makromolekulare Chemie Rapid Communications, 1989, 10, 687-690.	1.1	45
310	Monoalkene Polymerization: Stereospecificity. , 1989, , 29-50.		36
311	Catalytic activity of benzimidazole in the imidization of polyamic acids. Journal of Applied Polymer Science, 1988, 36, 243-248.	1.3	18
312	Melting and solid phase transitions of isothermally crystallized copolymers of tetrafluoroethylene and hexafluoropropylene. European Polymer Journal, 1988, 24, 445-448.	2.6	12
313	Blends of two poly(aryl ether ketones). Polymer, 1988, 29, 1016-1020.	1.8	32
314	Miscible polybenzimidazole blends with a benzophenone-based polyimide. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 301-313.	2.4	39
315	Fourier transform infrared spectroscopy of some miscible polybenzimidazole/polyimide blends. Macromolecules, 1988, 21, 231-234.	2.2	120
316	Temperature dependence of intramolecular disorder in the high-temperature phase of poly(tetrafluoroethylene) (phase I). Macromolecules, 1988, 21, 1174-1176.	2.2	21
317	Possible Models for the Steric Control in the Heterogeneous High-Yield and Homogeneous Ziegler-Natta Polymerizations of 1-alkenes., 1988,, 337-348.		21
318	Fourier transform analysis of models for the disordered phases (IV and I) of poly(tetrafluoroethylene). Macromolecules, 1987, 20, 3043-3046.	2.2	18
319	On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules, 1986, 19, 2699-2703.	2.2	150
320	On blends of poly(vinylidene fluoride) and poly(vinyl fluoride). Macromolecules, 1986, 19, 1935-1938.	2.2	73
321	Manufacturing of polypropylene laminates and related structural reorganization in the crystalline phase. Journal of Applied Polymer Science, 1986, 32, 5811-5816.	1.3	1
322	Crystalline order and melting behaviour of isotactic polypropylene (\hat{l}_{\pm} -form). Journal of Theoretical Biology, 1985, 30, 1331-1335.	0.8	20
323	Unusual recrystallization and melting behaviour in DSC scans of isotactic polypropylene samples. Journal of Theoretical Biology, 1985, 30, 1337-1342.	0.8	3
324	X-ray analysis on unoriented and oriented samples of the quenched form of isotactic polypropylene. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 573-575.	1,1	20

#	Article	IF	CITATIONS
325	Extrapolation to the equilibrium melting temperature for isotactic polypropylene. Macromolecules, 1985, 18, 813-814.	2.2	61
326	Stereoselectivity of the model catalytic site proposed for the isospecific Ziegler-Natta polymerization of the .alphaolefins. Macromolecules, 1985, 18, 1401-1406.	2.2	23
327	New model of the origin of the stereospecificity in the synthesis of syndiotactic polypropylene. Macromolecules, 1985, 18, 2030-2034.	2.2	37
328	Surface Addition of Flame Retardants in Acrylic Cast Sheets. Journal of Fire Sciences, 1984, 2, 60-69.	0.9	0
329	Recrystallization kinetics of isotactic polypropylene (α-form). Polymer, 1984, 25, 1462-1464.	1.8	31
330	Conditions for the $\hat{l}\pm 1-\hat{l}\pm 2$ transition in isotactic polypropylene samples. European Polymer Journal, 1984, 20, 937-941.	2.6	62
331	Conformational analysis of polypropylene chains bound to model catalytic sites. European Polymer Journal, 1984, 20, 1177-1182.	2.6	27
332	Additives in transparent glassy polymers: Concentration profiles obtained by solvent diffusion technique. Journal of Applied Polymer Science, 1984, 29, 2271-2279.	1.3	5
333	Title is missing!. Die Makromolekulare Chemie, 1984, 185, 2599-2608.	1.1	11
334	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 631-634.	1.1	42
335	Effects of postcuring and water sorption on the mechanical properties of composite dental restorative materials. Biomaterials, 1983, 4, 228-229.	5.7	5
336	Use of polymeric materials in the assembly of solar cells. Solar Energy, 1983, 30, 421-424.	2.9	4
337	Steric control in the first step of the isospecific Ziegler-Natta polymerization of propene. Macromolecules, 1982, 15, 1242-1245.	2.2	49
338	Steric control in Ziegler-Natta catalysts: An analysis of nonbonded interactions at model catalytic sites. Journal of Catalysis, 1982, 77, 32-42.	3.1	79
339	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 753-756.	1.1	43
340	Mechanical properties of glass-bead filled polystyrene composites. Composites, 1981, 12, 33-37.	0.9	18
341	The viscoelastic and equilibrium rheooptical behaviour of crosslinked ethylene-propylene copolymers. Colloid and Polymer Science, 1981, 259, 1190-1197.	1.0	8
342	Analysis of models for the ziegler-natta stereospecific polymerization on the basis of non-bonded interactions at the catalytic site—II. European Polymer Journal, 1980, 16, 835-842.	2.6	73

#	Article	IF	CITATIONS
343	Geometrical and energetical feasibility of a highly extended chain conformation for isotactic polystyrene. European Polymer Journal, 1980, 16, 1089-1092.	2.6	17
344	Analysis of models for the Ziegler-Natta stereospecific polymerization on the basis of non-bonded interactions at the catalytic site—l. The Cossee model. European Polymer Journal, 1979, 15, 1133-1141.	2.6	127
345	Isolated and aggregated carvacrol guest molecules in cocrystalline poly(2,6-dimethyl-1,4-phenylene)oxide films. Polymer Journal, 0, , .	1.3	8
346	Polymer co-crystalline films for photonics. Journal of the European Optical Society-Rapid Publications, 0, 4, .	0.9	8