List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935938/publications.pdf Version: 2024-02-01

		94433	123424
222	4,803	37	61
papers	citations	h-index	g-index
223	223	223	3658
all docs	docs citations	times ranked	citing authors

ADIAN REL

#	Article	lF	CITATIONS
1	Gastric deformation models for adaptive radiotherapy: Personalized vs population-based strategy. Radiotherapy and Oncology, 2022, 166, 126-132.	0.6	6
2	PD-0235 AI-based online adaptive CBCT-guided radiotherapy for bladder cancer using SIB and fiducial markers. Radiotherapy and Oncology, 2022, 170, S196-S197.	0.6	1
3	PO-1072 Mechanical re-inflation to maintain chest inflation during prolonged breath-holds for radiotherapy. Radiotherapy and Oncology, 2022, 170, S907-S908.	0.6	0
4	PD-0229 3D abdominal organ motion correlates strongly with the diaphragm during prolonged breath-holds. Radiotherapy and Oncology, 2022, 170, S188-S190.	0.6	0
5	PD-0905 Bowel loop motion decreases during radiotherapy in gynaecological cancer patients using 3D cine-MRI. Radiotherapy and Oncology, 2022, 170, S801-S802.	0.6	0
6	PD-0233 Breathing amplitude is reduced by rapid shallow breathing at 60 breaths/minute. Radiotherapy and Oncology, 2022, 170, S193-S194.	0.6	0
7	Quantifying the reduction of respiratory motion by mechanical ventilation with MRI for radiotherapy. Radiation Oncology, 2022, 17, .	2.7	4
8	Pediatric radiotherapy for thoracic and abdominal targets: Organ motion, reported margin sizes, and delineation variations – A systematic review. Radiotherapy and Oncology, 2022, 173, 134-145.	0.6	3
9	PO-1308 Feasibility of endoscopic fiducial marker implantation in the stomach for use in image-guided RT. Radiotherapy and Oncology, 2022, 170, S1103-S1105.	0.6	0
10	Robust optimization for HDR prostate brachytherapy applied to organ reconstruction uncertainty. Physics in Medicine and Biology, 2021, 66, 055001.	3.0	9
11	A 3D cineâ€MRI acquisition technique and image analysis framework to quantify bowel motion demonstrated in gynecological cancer patients. Medical Physics, 2021, 48, 3109-3119.	3.0	4
12	PO-0200 Comparison of catheter position planning algorithms for HDR prostate brachytherapy under uncertainty. Radiotherapy and Oncology, 2021, 158, S159-S160.	0.6	0
13	PO-0216 Healthy tissue constraints for catheter position optimization in HDR prostate brachytherapy planning. Radiotherapy and Oncology, 2021, 158, S177-S179.	0.6	0
14	Feasibility of Conebeam CT-based online adaptive radiotherapy for neoadjuvant treatment of rectal cancer. Radiation Oncology, 2021, 16, 136.	2.7	31
15	PD-0860 Kidney motion and motion velocity during inhale and exhale prolonged breath-holding (~5min). Radiotherapy and Oncology, 2021, 161, S694-S695.	0.6	0
16	OC-0618 Feasibility CBCT-based online adaptive 5x5Gy radiotherapy for neoadjuvant rectal cancer treatment Radiotherapy and Oncology, 2021, 161, S482-S483.	0.6	0
17	OC-0314 Panoptes - a novel tool for teaching organ at risk delineation to radiotherapy technologists. Radiotherapy and Oncology, 2021, 161, S223-S225.	0.6	0
18	PH-0264 Quantification of organ motion during prolonged breath-holding using deformable image registration. Radiotherapy and Oncology, 2021, 161, S171-S173.	0.6	0

#	Article	IF	CITATIONS
19	PD-0821 Artificial Intelligence based planning of HDR prostate brachytherapy: first clinical experience Radiotherapy and Oncology, 2021, 161, S653-S655.	0.6	1
20	PH-0267 Exploration of feasible motion metrics for bowel motion quantification in pelvic radiotherapy. Radiotherapy and Oncology, 2021, 161, S175-S176.	0.6	0
21	Evaluating differences in respiratory motion estimates during radiotherapy: a single planning 4DMRI versus daily 4DMRI. Radiation Oncology, 2021, 16, 188.	2.7	6
22	Low dose cone beam CT for paediatric image-guided radiotherapy: Image quality and practical recommendations. Radiotherapy and Oncology, 2021, 163, 68-75.	0.6	6
23	Evaluation of Ultra-low-dose Paediatric Cone-beam Computed Tomography for Image-guided Radiotherapy. Clinical Oncology, 2020, 32, 835-844.	1.4	4
24	Biâ€objective optimization of catheter positions for highâ€doseâ€rate prostate brachytherapy. Medical Physics, 2020, 47, 6077-6086.	3.0	5
25	Defining short and prolonged breath-holds. British Journal of Radiology, 2020, 93, 20200191.	2.2	3
26	Feasibility of cone beam CT-guided library of plans strategy in pre-operative gastric cancer radiotherapy. Radiotherapy and Oncology, 2020, 149, 49-54.	0.6	12
27	Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part II: Offline and online plan adaption for interfractional changes. Radiotherapy and Oncology, 2020, 153, 88-96.	0.6	50
28	Online adaptive radiotherapy compared to plan selection for rectal cancer: quantifying the benefit. Radiation Oncology, 2020, 15, 162.	2.7	18
29	Automatic bi-objective parameter tuning for inverse planning of high-dose-rate prostate brachytherapy. Physics in Medicine and Biology, 2020, 65, 075009.	3.0	8
30	Dosimetric benefit of an adaptive treatment by means of plan selection for rectal cancer patients in both short and long course radiation therapy. Radiation Oncology, 2020, 15, 13.	2.7	11
31	Robust Evolutionary Bi-objective Optimization for Prostate Cancer Treatment with High-Dose-Rate Brachytherapy. Lecture Notes in Computer Science, 2020, , 441-453.	1.3	5
32	Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy. Physics in Medicine and Biology, 2020, 65, 245021.	3.0	2
33	Automatic generation of three-dimensional dose reconstruction data for two-dimensional radiotherapy plans for historically treated patients. Journal of Medical Imaging, 2020, 7, 1.	1.5	1
34	OC-0225: Highly-individualized dose reconstruction for pediatric abdominal radiotherapy with machine learning. Radiotherapy and Oncology, 2020, 152, S115-S116.	0.6	0
35	OC-0439: Quantifying the benefit of online adaptive radiotherapy for rectal cancer compared to plan selection. Radiotherapy and Oncology, 2020, 152, S242.	0.6	0
36	OC-0568: The effect of external beam radiotherapy on bowel motility in gynaecological cancer patients. Radiotherapy and Oncology, 2020, 152, S317-S318.	0.6	0

#	Article	IF	CITATIONS
37	PO-1730: Development of a framework to quantify bowel motility in 3D using MRI. Radiotherapy and Oncology, 2020, 152, S958-S959.	0.6	0
38	OC-0339: First MRI based quantification of diaphragm motion during prolonged breath-holds up to 8 minutes. Radiotherapy and Oncology, 2020, 152, S178-S179.	0.6	0
39	PO-1894: AD-HOC adaptive radiotherapy: how often do anatomical changes lead to treatment adaptation?. Radiotherapy and Oncology, 2020, 152, S1057.	0.6	0
40	PO-1589: Comparison of diaphragm motion amplitude during free versus regularized breathing measured with MRI. Radiotherapy and Oncology, 2020, 152, S863-S864.	0.6	0
41	Dosimetric comparison of library of plans and online MRI-guided radiotherapy of cervical cancer in the presence of intrafraction anatomical changes. Radiation Oncology, 2019, 14, 126.	2.7	10
42	Prospective validation of craniocaudal tumour size on MR imaging compared to histoPAthology in patients with uterine cervical cancer: The MPAC study. Clinical and Translational Radiation Oncology, 2019, 18, 9-15.	1.7	5
43	EP-1722 Development and validation of a strategy to use actual leaf positions as a patient QA tool. Radiotherapy and Oncology, 2019, 133, S928-S929.	0.6	0
44	OC-0303 Dosimetric benefit of a clinically applied adaptive plan selection strategy for rectal cancer. Radiotherapy and Oncology, 2019, 133, S154-S155.	0.6	0
45	OC-0395 Bi-objective optimization of dosimetric indices for HDR prostate brachytherapy within 30 seconds. Radiotherapy and Oncology, 2019, 133, S199-S200.	0.6	1
46	OC-0396 Robust HDR prostate brachytherapy planning accounting for organ reconstruction settings. Radiotherapy and Oncology, 2019, 133, S200-S201.	0.6	0
47	PO-0980 Dosimetric comparison of library of plans and online MRI-guided radiotherapy of cervical cancer. Radiotherapy and Oncology, 2019, 133, S535-S536.	0.6	0
48	PO-1018 Current status of pediatric image-guided radiation therapy in Europe: An international survey. Radiotherapy and Oncology, 2019, 133, S563-S564.	0.6	1
49	Fast and insightful bi-objective optimization for prostate cancer treatment planning with high-dose-rate brachytherapy. Applied Soft Computing Journal, 2019, 84, 105681.	7.2	9
50	PO-0988 CBCT-based library of plans approach in gastric cancer radiotherapy: proof of concept. Radiotherapy and Oncology, 2019, 133, S542-S543.	0.6	0
51	EP-1991 PTV margin evaluation for pediatric craniospinal irradiation with 3D and 2D position verification. Radiotherapy and Oncology, 2019, 133, S1087-S1088.	0.6	1
52	GPUâ€accelerated biâ€objective treatment planning for prostate highâ€doseâ€rate brachytherapy. Medical Physics, 2019, 46, 3776-3787.	3.0	22
53	A novel amplitude binning strategy to handle irregular breathing during 4DMRI acquisition: improved imaging for radiotherapy purposes. Radiation Oncology, 2019, 14, 80.	2.7	10
54	Sensitivity of doseâ€volume indices to computation settings in highâ€doseâ€rate prostate brachytherapy treatment plan evaluation. Journal of Applied Clinical Medical Physics, 2019, 20, 66-74.	1.9	9

#	Article	lF	CITATIONS
55	Evaluation of bi-objective treatment planning for high-dose-rate prostate brachytherapy—A retrospective observer study. Brachytherapy, 2019, 18, 396-403.	0.5	23
56	How do patient characteristics and anatomical features correlate to accuracy of organ dose reconstruction for Wilms' tumor radiation treatment plans when using a surrogate patient's CT scan?. Journal of Radiological Protection, 2019, 39, 598-619.	1.1	4
57	Dosimetric Benefits of Midposition Compared With Internal Target Volume Strategy for Esophageal Cancer Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2019, 103, 491-502.	0.8	5
58	The effectiveness of 4 <scp>DCT</scp> in children and adults: A pooled analysis. Journal of Applied Clinical Medical Physics, 2019, 20, 276-283.	1.9	3
59	Automatic radiotherapy plan emulation for 3D dose reconstruction to enable big data analysis for historically treated patients. , 2019, , .		1
60	On the feasibility of automatically selecting similar patients in highly individualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors. Medical Physics, 2018, 45, 1504-1517.	3.0	7
61	Dose warping uncertainties for the accumulated rectal wall dose in cervical cancer brachytherapy. Brachytherapy, 2018, 17, 449-455.	0.5	10
62	Are age and gender suitable matching criteria in organ dose reconstruction using surrogate childhood cancer patients' CT scans?. Medical Physics, 2018, 45, 2628-2638.	3.0	6
63	Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 2018, 34, 30-38.	2.5	34
64	Application and benchmarking of multi-objective evolutionary algorithms on high-dose-rate brachytherapy planning for prostate cancer treatment. Swarm and Evolutionary Computation, 2018, 40, 37-52.	8.1	33
65	Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. Strahlentherapie Und Onkologie, 2018, 194, 255-263.	2.0	9
66	Better and faster catheter position optimization in HDR brachytherapy for prostate cancer using multi-objective real-valued GOMEA. , 2018, , .		7
67	Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. International Journal of Oncology, 2018, 54, 209-218.	3.3	1
68	Role of deformable image registration for delivered dose accumulation of adaptive external beam radiation therapy and brachytherapy in cervical cancer. Journal of Contemporary Brachytherapy, 2018, 10, 542-550.	0.9	14
69	Technical and Clinical Evaluation of the ALBA-4D 70MHz Loco-Regional Hyperthermia System. , 2018, , .		15
70	Predictive value of pediatric respiratory-induced diaphragm motion quantified using pre-treatment 4DCT and CBCTs. Radiation Oncology, 2018, 13, 198.	2.7	6
71	Symbolic regression and feature construction with CP-GOMEA applied to radiotherapy dose reconstruction of childhood cancer survivors. , 2018, , .		15
72	Density override in treatment planning to mitigate the dosimetric effect induced by gastrointestinal gas in esophageal cancer radiation therapy. Acta Oncológica, 2018, 57, 1646-1654.	1.8	4

#	Article	IF	CITATIONS
73	Abdominal organ position variation in children during image-guided radiotherapy. Radiation Oncology, 2018, 13, 173.	2.7	8
74	Large-scale parallelization of partial evaluations in evolutionary algorithms for real-world problems. , 2018, , .		8
75	Heart volume reduction during radiotherapy involving the thoracic region in children: An unexplained phenomenon. Radiotherapy and Oncology, 2018, 128, 214-220.	0.6	1
76	The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. International Journal of Hyperthermia, 2018, 34, 901-909.	2.5	23
77	PV-0256: Fast and insightful bi-objective HDR prostate brachytherapy planning. Radiotherapy and Oncology, 2018, 127, S130.	0.6	1
78	EP-1918: Dosimetric benefits of mid-position approach compared with internal target volume for esophageal RT. Radiotherapy and Oncology, 2018, 127, S1042-S1043.	0.6	0
79	EP-2126: 4DMRI amplitude binning: better estimation of reconstructed motion at no cost in 4DMRI quality. Radiotherapy and Oncology, 2018, 127, S1170-S1171.	0.6	0
80	EP-2361: What is the gain of breath hold for re-irradiation of recurrent left-sided breast cancer with VMAT?. Radiotherapy and Oncology, 2018, 127, S1235-S1236.	0.6	0
81	Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS ONE, 2018, 13, e0194590.	2.5	44
82	Evaluation of Six Diffusion-weighted MRI Models for Assessing Effects of Neoadjuvant Chemoradiation in Pancreatic Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1052-1062.	0.8	20
83	OC-0174: Deformable image registration for dose accumulation of adaptive EBRT and BT in cervical cancer. Radiotherapy and Oncology, 2018, 127, S91.	0.6	0
84	PO-1020: Better plans and easy plan selection via bi-objective optimization for HDR prostate brachytherapy. Radiotherapy and Oncology, 2018, 127, S571-S572.	0.6	0
85	The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiation Oncology, 2018, 13, 96.	2.7	301
86	Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation therapy. Journal of Medical Imaging, 2018, 5, 1.	1.5	0
87	Dose coverage calculation using a statistical shape model—applied to cervical cancer radiotherapy. Physics in Medicine and Biology, 2017, 62, 4140-4159.	3.0	12
88	Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Physics in Medicine and Biology, 2017, 62, 3051-3064.	3.0	26
89	Dosimetric advantages of a clinical daily adaptive plan selection strategy compared with a non-adaptive strategy in cervical cancer radiation therapy. Acta OncolA ³ gica, 2017, 56, 667-674.	1.8	40
90	Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography. Radiotherapy and Oncology, 2017, 124, 147-154.	0.6	17

#	Article	IF	CITATIONS
91	Quality assurance of the PREOPANC trial (2012-003181-40) for preoperative radiochemotherapy in pancreatic cancer. Strahlentherapie Und Onkologie, 2017, 193, 630-638.	2.0	7
92	Structure-based deformable image registration: Added value for dose accumulation of external beam radiotherapy and brachytherapy in cervical cancer. Radiotherapy and Oncology, 2017, 123, 319-324.	0.6	21
93	Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study. Acta Oncológica, 2017, 56, 923-930.	1.8	23
94	Magnitude and variability of respiratory-induced diaphragm motion in children during image-guided radiotherapy. Radiotherapy and Oncology, 2017, 123, 263-269.	0.6	16
95	Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer patients. Journal of Applied Clinical Medical Physics, 2017, 18, 142-151.	1.9	14
96	Efficient, effective, and insightful tackling of the high-dose-rate brachytherapy treatment planning problem for prostate cancer using evolutionary multi-objective optimization algorithms. , 2017, , .		2
97	Exploring trade-offs between target coverage, healthy tissue sparing, and the placement of catheters in HDR brachytherapy for prostate cancer using a novel multi-objective model-based mixed-integer evolutionary algorithm. , 2017, , .		7
98	PV-0188: Improved class solutions for prostate brachytherapy planning via evolutionary machine learning. Radiotherapy and Oncology, 2017, 123, S96-S97.	0.6	1
99	Image Distortions on a Plastic Interstitial Computed Tomography/Magnetic Resonance Brachytherapy Applicator at 3ÂTesla Magnetic Resonance Imaging and Their Dosimetric Impact. International Journal of Radiation Oncology Biology Physics, 2017, 99, 710-718.	0.8	4
100	Interfractional renal and diaphragmatic position variation during radiotherapy in children and adults: is there a difference?. Acta Oncológica, 2017, 56, 1065-1071.	1.8	8
101	Considerable interobserver variation in delineation of pancreatic cancer on 3DCT and 4DCT: a multi-institutional study. Radiation Oncology, 2017, 12, 58.	2.7	17
102	A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiation Oncology, 2017, 12, 75.	2.7	60
103	3D radiobiological evaluation of combined radiotherapy and hyperthermia treatments. International Journal of Hyperthermia, 2017, 33, 160-169.	2.5	31
104	Probabilistic treatment planning for pancreatic cancer treatment: prospective incorporation of respiratory motion shows only limited dosimetric benefit. Acta Oncológica, 2017, 56, 398-404.	1.8	5
105	Minimizing the Acquisition Time for Intravoxel Incoherent Motion Magnetic Resonance Imaging Acquisitions in the Liver and Pancreas. Investigative Radiology, 2016, 51, 211-220.	6.2	37
106	Revisiting the Potential of Alternating Repetition Time Balanced Steady-State Free Precession Imaging of the Abdomen at 3 T. Investigative Radiology, 2016, 51, 560-568.	6.2	4
107	A biological modeling based comparison of two strategies for adaptive radiotherapy of urinary bladder cancer. Acta Oncológica, 2016, 55, 1009-1015.	1.8	5
108	Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine and Biology, 2016, 61, N80-N89.	3.0	48

#	Article	IF	CITATIONS
109	Quantitative assessment of biliary stent artifacts on MR images: Potential implications for target delineation in radiotherapy. Medical Physics, 2016, 43, 5603-5615.	3.0	7
110	Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography. Radiotherapy and Oncology, 2016, 118, 492-497.	0.6	38
111	The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiotherapy and Oncology, 2016, 119, 319-325.	0.6	34
112	4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers. , 2016, , .		1
113	Potential dosimetric benefit of an adaptive plan selection strategy for short-course radiotherapy in rectal cancer patients. Radiotherapy and Oncology, 2016, 119, 525-530.	0.6	24
114	Considerable pancreatic tumor motion during breath-holding. Acta Oncológica, 2016, 55, 1360-1368.	1.8	32
115	OC-0161: Renal and diaphragmatic interfractional motion in children and adults: is there a difference?. Radiotherapy and Oncology, 2016, 119, S75.	0.6	1
116	PO-0759: Results of radical radiotherapy with a tumour boost for bladder cancer in patients unfit for surgery. Radiotherapy and Oncology, 2016, 119, S355-S356.	0.6	0
117	PO-0913: Clinically applicable T2-weighted 4D Magnetic Resonance Imaging with good abdominal contrast. Radiotherapy and Oncology, 2016, 119, S440-S441.	0.6	1
118	PV-0228: Size and impact of intra-fractional changes in baseline shift during lung SBRT. Radiotherapy and Oncology, 2016, 119, S103-S104.	0.6	0
119	In Vivo Quantification of Image Distortions on The Utrecht Interstitial CT/MR Brachytherapy Applicator at 3T MRI. Brachytherapy, 2016, 15, S152.	0.5	0
120	Plan selection strategy for rectum cancer patients: An interobserver study to assess clinical feasibility. Radiotherapy and Oncology, 2016, 120, 207-211.	0.6	17
121	PO-0882: Abdominal organ motion during breath-hold measured in volunteers on MRI: inhale and exhale compared. Radiotherapy and Oncology, 2016, 119, S422-S423.	0.6	1
122	In Regard to Boda-Heggemann etÂal. International Journal of Radiation Oncology Biology Physics, 2016, 96, 709-710.	0.8	3
123	Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared. Radiotherapy and Oncology, 2016, 121, 268-275.	0.6	37
124	Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiation Oncology, 2016, 11, 14.	2.7	37
125	Quantification of image distortions on the Utrecht interstitial CT/MR brachytherapy applicator at 3T MRI. Brachytherapy, 2016, 15, 118-126.	0.5	8
126	Clinical results of conformal versus intensity-modulated radiotherapy using a focal simultaneous boost for muscle-invasive bladder cancer in elderly or medically unfit patients. Radiation Oncology, 2016, 11, 45.	2.7	29

#	Article	IF	CITATIONS
127	Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison. Physics in Medicine and Biology, 2016, 61, 1780-1794.	3.0	13
128	Dosimetric advantages of proton therapy compared with photon therapy using an adaptive strategy in cervical cancer. Acta Oncológica, 2016, 55, 892-899.	1.8	24
129	Thermoradiotherapy planning: Integration in routine clinical practice. International Journal of Hyperthermia, 2016, 32, 41-49.	2.5	55
130	MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds. Medical Physics, 2016, 43, 3711-3711.	3.0	2
131	TU-H-206-08: Quantitative Impact of Biliary Stent Artefacts On MR Images. Medical Physics, 2016, 43, 3775-3775.	3.0	0
132	Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning. Medical Physics, 2015, 42, 348-353.	3.0	3
133	OC-0282: Considerable intra-breath-hold motion and inter-breathhold position variation of pancreatic tumors. Radiotherapy and Oncology, 2015, 115, S144.	0.6	1
134	OC-0093: Quantification of deformations on 3T MRI for the Utrecht Interstitial CT/MR brachytherapy applicator. Radiotherapy and Oncology, 2015, 115, S47.	0.6	0
135	Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Medical Physics, 2015, 42, 2638-2647.	3.0	44
136	OC-0545: Quantification of respiration-induced esophageal tumor motion using fiducial markers and 4D computed tomography. Radiotherapy and Oncology, 2015, 115, S263-S264.	0.6	0
137	PO-1096 Inter-fraction variation of gas volume in the abdominal region during radiotherapy for distal esophageal cancer. Radiotherapy and Oncology, 2015, 115, S592-S593.	0.6	2
138	A mixed frequency approach to optimize locoregional RF hyperthermia. , 2015, , .		0
139	Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: A multicenter study. Radiotherapy and Oncology, 2015, 117, 425-431.	0.6	19
140	Marker-based quantification of interfractional tumor position variation and the use of markers for setup verification in radiation therapy for esophageal cancer. Radiotherapy and Oncology, 2015, 117, 412-418.	0.6	37
141	A comparison of inverse optimization algorithms for HDR/PDR prostate brachytherapy treatment planning. Brachytherapy, 2015, 14, 279-288.	0.5	35
142	Regarding Edmunds et al. Cardiac volume effects during chemoradiotherapy for esophageal cancer. Radiotherapy and Oncology, 2015, 114, 130.	0.6	0
143	Reduction of heart volume during neoadjuvant chemoradiation in patients with resectable esophageal cancer. Radiotherapy and Oncology, 2015, 114, 91-95.	0.6	16
144	Evaluation of delivered dose for a clinical daily adaptive plan selection strategy for bladder cancer radiotherapy. Radiotherapy and Oncology, 2015, 116, 51-56.	0.6	39

#	Article	IF	CITATIONS
145	Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics, 2015, 92, 675-682.	0.8	19
146	EP-1467: Meta-analysis of radiosensitivity and fractionation sensitivity of human tumours. Radiotherapy and Oncology, 2015, 115, S795-S796.	0.6	0
147	OC-0261: Does chin fixation improve the setup accuracy of the patients receiving locoregional treatment for breast cancer?. Radiotherapy and Oncology, 2015, 115, S133-S134.	0.6	0
148	Quantification of delineation errors of the gross tumor volume on magnetic resonance imaging in uterine cervical cancer using pathology data and deformation correction. Acta Oncológica, 2015, 54, 224-231.	1.8	12
149	SU-C-210-05: Evaluation of Robustness: Dosimetric Effects of Anatomical Changes During Fractionated Radiation Treatment of Pancreatic Cancer Patients. Medical Physics, 2015, 42, 3205-3205.	3.0	1
150	SUâ€Eâ€Jâ€216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators. Medical Physics, 2015, 42, 3315-3315.	3.0	0
151	Prostate volume and implant configuration during 48Âhours of temporary prostate brachytherapy: limited effect of oedema. Radiation Oncology, 2014, 9, 272.	2.7	5
152	Differences in respiratory-induced pancreatic tumor motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncológica, 2014, 53, 1257-1264.	1.8	55
153	Generic method for automatic bladder segmentation on cone beam CT using a patientâ€specific bladder shape model. Medical Physics, 2014, 41, 031707.	3.0	15
154	Limited Role for Biliary Stent as Surrogate Fiducial Marker in Pancreatic Cancer: Stent and Intratumoral Fiducials Compared. International Journal of Radiation Oncology Biology Physics, 2014, 89, 641-648.	0.8	26
155	Toward Online Adaptive Hyperthermia Treatment Planning: Correlation Between Measured and Simulated Specific Absorption Rate Changes Caused by Phase Steering in Patients. International Journal of Radiation Oncology Biology Physics, 2014, 90, 438-445.	0.8	39
156	Dosimetric Benefits of Using a Mid-Ventilation or Breath-Hold Approach as an Alternative to Internal Target Volume for Pancreatic Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2014, 90, S859.	0.8	0
157	Validation of deformable image registration algorithms on CT images of <i>ex vivo</i> porcine bladders with fiducial markers. Medical Physics, 2014, 41, 071916.	3.0	44
158	EUS-guided fiducial markers placement with a 22-gauge needle for image-guided radiation therapy in pancreatic cancer. Gastrointestinal Endoscopy, 2014, 79, 851-855.	1.0	60
159	Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions. International Journal of Radiation Oncology Biology Physics, 2014, 88, 739-745.	0.8	60
160	OC-0282: Optimizing cone-beam CT presets for children to reduce imaging dose illustrated with craniospinal axis. Radiotherapy and Oncology, 2014, 111, S109-S110.	0.6	7
161	Reduction in cardiac volume during chemoradiotherapy for patients with esophageal cancer. Radiotherapy and Oncology, 2013, 109, 200-203.	0.6	14
162	Interfractional Position Variation of Pancreatic Tumors Quantified Using Intratumoral Fiducial Markers and Daily Cone Beam Computed Tomography. International Journal of Radiation Oncology Biology Physics, 2013, 87, 202-208.	0.8	71

#	Article	IF	CITATIONS
163	Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Medical Physics, 2013, 40, 103303.	3.0	32
164	A Quick, User-Friendly and Interactive Approach for High-Dose-Rate and Pulsed-Dose-Rate Brachytherapy Treatment Planning: Enhanced Geometric Optimization - Interactive Inverse Planning. Brachytherapy, 2013, 12, S40-S41.	0.5	1
165	Improved tumour control probability with MRI-based prostate brachytherapy treatment planning. Acta Oncológica, 2013, 52, 658-665.	1.8	16
166	Deviations from the planned dose during 48hours of stepping source prostate brachytherapy caused by anatomical variations. Radiotherapy and Oncology, 2013, 107, 106-111.	0.6	12
167	PD-0585: Dose escalation by adding hyperthermia: a modelling study. Radiotherapy and Oncology, 2013, 106, S225.	0.6	0
168	PD-0273: Cardiac volume reduction during chemo-radiotherapy of oesophageal cancer patients. Radiotherapy and Oncology, 2013, 106, S106-S107.	0.6	1
169	Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy. Medical Physics, 2013, 40, 021702.	3.0	22
170	SU-C-WAB-05: Automatic Bladder Segmentation On CBCT for Plan Selection During Cervical ART. Medical Physics, 2013, 40, 90-91.	3.0	0
171	Automatic delineation of body contours on cone-beam CT images using a delineation booster. Physics in Medicine and Biology, 2012, 57, N225-N236.	3.0	3
172	Semiautomatic bladder segmentation on CBCT using a population-based model for multiple-plan ART of bladder cancer. Physics in Medicine and Biology, 2012, 57, N525-N541.	3.0	6
173	Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model. Physics in Medicine and Biology, 2012, 57, 3945-3962.	3.0	25
174	A quality assurance tool for helical tomotherapy using a step-wedge phantom and the on-board MVCT detector. Journal of Applied Clinical Medical Physics, 2012, 13, 148-163.	1.9	13
175	Dose-Guided Radiotherapy: Potential Benefit of Online Dose Recalculation for Stereotactic Lung Irradiation in Patients With Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 83, e557-e562.	0.8	11
176	Finite element based bladder modeling for imageâ€guided radiotherapy of bladder cancer. Medical Physics, 2011, 38, 142-150.	3.0	34
177	A voxel-based finite element model for the prediction of bladder deformation. Medical Physics, 2011, 39, 55-65.	3.0	16
178	Uncertainty in hyperthermia treatment planning: the need for robust system design. Physics in Medicine and Biology, 2011, 56, 3233-3250.	3.0	52
179	704 poster CT-BASED PROSTATE BRACHYTHERAPY TREATMENT PLANS SHOW LOWER TARGET COVERAGE WHEN EVALUATED ON MRI ANATOMY. Radiotherapy and Oncology, 2011, 99, S281.	0.6	0
180	Determination of Margins for Pelvic Lymph Nodes for the Treatment of Bladder Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 81, S449-S450.	0.8	1

#	Article	IF	CITATIONS
181	Improved power steering with double and triple ring waveguide systems: The impact of the operating frequency. International Journal of Hyperthermia, 2011, 27, 224-239.	2.5	24
182	3D versus 2D steering in patient anatomies: A comparison using hyperthermia treatment planning. International Journal of Hyperthermia, 2011, 27, 74-85.	2.5	26
183	SU-F-BRA-04: Automatic Bladder Segmentation on CBCT for Online ART of Bladder Cancer. Medical Physics, 2011, 38, 3700-3700.	3.0	0
184	SU-E-T-569: Potential Benefit of Dose-Guided Radiotherapy with On-Line Dose Evaluation for SBRT for Lung Tumors. Medical Physics, 2011, 38, 3620-3620.	3.0	0
185	Optimization in hyperthermia treatment planning: The impact of tissue perfusion uncertainty. Medical Physics, 2010, 37, 4540-4550.	3.0	58
186	Behavior of Lipiodol Markers During Image Guided Radiotherapy of Bladder Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 77, 309-314.	0.8	51
187	Independent position correction on tumor and lymph nodes; consequences for bladder cancer irradiation with two combined IMRT plans. Radiation Oncology, 2010, 5, 53.	2.7	12
188	SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations. International Journal of Hyperthermia, 2010, 26, 171-184.	2.5	18
189	The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 locoregional hyperthermia system on tumour coverage. Physics in Medicine and Biology, 2010, 55, 4899-4916.	3.0	10
190	Comparison of two different 70 MHz applicators for large extremity lesions: Simulation and application. International Journal of Hyperthermia, 2010, 26, 376-388.	2.5	12
191	Improving bladder cancer treatment with radiotherapy using separate intensity modulated radiotherapy plans for boost and elective fields. Journal of Medical Imaging and Radiation Oncology, 2010, 54, 256-263.	1.8	11
192	Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping. Medical Physics, 2009, 36, 3795-3805.	3.0	4
193	FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. International Journal of Hyperthermia, 2009, 25, 462-476.	2.5	28
194	Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: A preclinical study. International Journal of Hyperthermia, 2009, 25, 581-592.	2.5	98
195	Body Conformal Antennas for Superficial Hyperthermia: The Impact of Bending Contact Flexible Microstrip Applicators on Their Electromagnetic Behavior. IEEE Transactions on Biomedical Engineering, 2009, 56, 2917-2926.	4.2	30
196	The effect of on-line position correction on the dose distribution in focal radiotherapy for bladder cancer. Radiation Oncology, 2009, 4, 38.	2.7	10
197	Effect of Translational and Rotational Errors on Complex Dose Distributions With Off-Line and On-Line Position Verification. International Journal of Radiation Oncology Biology Physics, 2009, 74, 1600-1608.	0.8	193
198	Accelerated ray tracing for radiotherapy dose calculations on a GPU. Medical Physics, 2009, 36, 4095-4102.	3.0	59

#	Article	IF	CITATIONS
199	Influence of daily setup measurements and corrections on the estimated delivered dose during IMRT treatment of prostate cancer patients. Radiotherapy and Oncology, 2009, 90, 291-298.	0.6	49
200	Adding MRI-based 3D brachytherapy dose distributions to 3D IMRT dose distributions in cervical cancer patients. Brachytherapy, 2008, 7, 123-124.	0.5	0
201	Dosimetric evaluation of prostate rotations and their correction by couch rotations. Radiotherapy and Oncology, 2008, 88, 156-162.	0.6	24
202	Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas. Radiotherapy and Oncology, 2007, 84, 49-51.	0.6	59
203	Adequate margins for random setup uncertainties in head-and-neck IMRT. International Journal of Radiation Oncology Biology Physics, 2005, 61, 938-944.	0.8	69
204	228 Potential efficacy of a couch with restricted out-of-plane rotations for on-line corrections. Radiotherapy and Oncology, 2005, 76, S110.	0.6	1
205	Definition of gross tumor volume in lung cancer: inter-observer variability. Radiotherapy and Oncology, 2002, 62, 37-49.	0.6	229
206	Automatic on-line electronic portal image analysis with a wavelet-based edge detector. Medical Physics, 2000, 27, 321-329.	3.0	22
207	A computerized remote table control for fast on-line patient repositioning: Implementation and clinical feasibility. Medical Physics, 2000, 27, 354-358.	3.0	44
208	Assessment of the uncertainties in dose delivery of a commercial system for linac-based stereotactic radiosurgery. International Journal of Radiation Oncology Biology Physics, 1999, 44, 421-433.	0.8	35
209	Characteristics and clinical application of a treatment simulator with Ct-option. Radiotherapy and Oncology, 1999, 50, 355-366.	0.6	12
210	Electronic Portal Imaging with On-Line Correction of Setup Error in Thoracic Irradiation: Clinical Evaluation. International Journal of Radiation Oncology Biology Physics, 1998, 40, 967-976.	0.8	108
211	Microprocessor controlled limitation system for a stand-alone freely movable treatment couch. Medical Physics, 1998, 25, 897-899.	3.0	7
212	Imaging processing for evaluation and reduction of geometrical uncertainties in prostate irradiation. European Journal of Cancer, 1997, 33, S137.	2.8	0
213	Initial experience with intensity-modulated conformal radiation therapy for treatment of the head and neck region. International Journal of Radiation Oncology Biology Physics, 1997, 39, 99-114.	0.8	115
214	Target margins for random geometrical treatment uncertainties in conformal radiotherapy. Medical Physics, 1996, 23, 1537-1545.	3.0	114
215	High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging. International Journal of Radiation Oncology Biology Physics, 1996, 35, 321-332.	0.8	193
216	Setup deviations in wedged pair irradiation of parotid gland and tonsillar tumors, measured with an electronic portal imaging device. Radiotherapy and Oncology, 1995, 37, 153-159.	0.6	79

#	Article	IF	CITATIONS
217	Transfer errors of planning CT to simulator: a possible source of setup inaccuracies?. Radiotherapy and Oncology, 1994, 31, 176-180.	0.6	41
218	Spatial Derivatives and the Propagation of Noise in Gaussian Scale Space. Journal of Visual Communication and Image Representation, 1993, 4, 1-13.	2.8	40
219	A verification procedure to improve patient set-up accuracy using portal images. Radiotherapy and Oncology, 1993, 29, 253-260.	0.6	241
220	A comprehensive system for the analysis of portal images. Radiotherapy and Oncology, 1993, 29, 221-229.	0.6	39
221	Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiotherapy and Oncology, 1993, 26, 162-171.	0.6	106
222	Detection of systematic patient setup errors by portal film analysis. Radiotherapy and Oncology, 1992, 23, 198.	0.6	28