
Osvaldo Rey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935632/publications.pdf Version: 2024-02-01

OSVALDO REV

#	Article	IF	CITATIONS
1	Effects of In Vitro Interactions of Oviduct Epithelial Cells with Frozen–Thawed Stallion Spermatozoa on Their Motility, Viability and Capacitation Status. Animals, 2021, 11, 74.	2.3	2
2	p.L571P in the linker domain of rat thyroglobulin causes intracellular retention. Molecular and Cellular Endocrinology, 2020, 505, 110719.	3.2	5
3	Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. Journal of Cellular Physiology, 2020, 235, 8334-8344.	4.1	8
4	Metformin inhibits β-catenin phosphorylation on Ser-552 through an AMPK/PI3K/Akt pathway in colorectal cancer cells. International Journal of Biochemistry and Cell Biology, 2019, 112, 88-94.	2.8	32
5	Protein kinase D1 inhibition interferes with mitosis progression. Journal of Cellular Physiology, 2019, 234, 20510-20519.	4.1	5
6	Lysosomal permeabilization and endoplasmic reticulum stress mediate the apoptotic response induced after photoactivation of a lipophilic zinc(II) phthalocyanine. International Journal of Biochemistry and Cell Biology, 2018, 103, 89-98.	2.8	10
7	Protein kinase D1 (PKD1) phosphorylation on Ser203 by type I p21-activated kinase (PAK) regulates PKD1 localization. Journal of Biological Chemistry, 2017, 292, 9523-9539.	3.4	10
8	Intracellular Ca 2+ oscillations generated via the extracellular Ca 2+ -sensing receptor (CaSR) in response to extracellular Ca 2+ or l -phenylalanine: Impact of the highly conservative mutation Ser170Thr. Biochemical and Biophysical Research Communications, 2015, 467, 1-6.	2.1	4
9	Intracellular Ca ²⁺ oscillations generated via the Ca ²⁺ -sensing receptor are mediated by negative feedback by PKCα at Thr ⁸⁸⁸ . American Journal of Physiology - Cell Physiology, 2014, 306, C298-C306.	4.6	12
10	Nerve injury induces glial cell lineâ€derived neurotrophic factor (gdnf) expression in schwann cells through purinergic signaling and the pkcâ€pkd pathway. Glia, 2013, 61, 1029-1040.	4.9	54
11	Negative Cross-talk between Calcium-sensing Receptor and \hat{l}^2 -Catenin Signaling Systems in Colonic Epithelium. Journal of Biological Chemistry, 2012, 287, 1158-1167.	3.4	63
12	Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. Journal of Cellular Physiology, 2010, 225, 73-83.	4.1	60
13	Amino acid sensing by enteroendocrine STC-1 cells: role of the Na+-coupled neutral amino acid transporter 2. American Journal of Physiology - Cell Physiology, 2010, 298, C1401-C1413.	4.6	30
14	CID755673 enhances mitogenic signaling by phorbol esters, bombesin and EGF through a protein kinase D-independent pathway. Biochemical and Biophysical Research Communications, 2010, 391, 63-68.	2.1	36
15	Protein Kinase D Mediates Mitogenic Signaling by Gq-coupled Receptors through Protein Kinase C-independent Regulation of Activation Loop Ser744 and Ser748 Phosphorylation. Journal of Biological Chemistry, 2009, 284, 13434-13445.	3.4	61
16	Protein kinase D isozymes activation and localization during mitosis. Experimental Cell Research, 2008, 314, 3057-3068.	2.6	17
17	Sequential Protein Kinase C (PKC)-dependent and PKC-independent Protein Kinase D Catalytic Activation via Gq-coupled Receptors. Journal of Biological Chemistry, 2008, 283, 12877-12887.	3.4	82
18	Insulin Potentiates Ca2+Signaling and Phosphatidylinositol 4,5-Bisphosphate Hydrolysis Induced by GqProtein-Coupled Receptor Agonists through an mTOR-Dependent Pathway. Endocrinology, 2007, 148, 3246-3257.	2.8	51

OSVALDO REY

#	Article	IF	CITATIONS
19	Protein kinase D2 potentiates MEK/ERK/RSK signaling, c-Fos accumulation and DNA synthesis induced by bombesin in Swiss 3T3 cells. Journal of Cellular Physiology, 2007, 211, 781-790.	4.1	40
20	The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution. Biochemical and Biophysical Research Communications, 2006, 342, 685-689.	2.1	10
21	Activation of protein kinase D3 by signaling through Rac and the α subunits of the heterotrimeric G proteins G12 and G13. Cellular Signalling, 2006, 18, 1051-1062.	3.6	28
22	Requirement of the TRPC1 Cation Channel in the Generation of Transient Ca2+ Oscillations by the Calcium-sensing Receptor. Journal of Biological Chemistry, 2006, 281, 38730-38737.	3.4	44
23	The Nuclear Import of Protein Kinase D3 Requires Its Catalytic Activity. Journal of Biological Chemistry, 2006, 281, 5149-5157.	3.4	19
24	Protein Kinase D Signaling. Journal of Biological Chemistry, 2005, 280, 13205-13208.	3.4	403
25	Amino Acid-stimulated Ca2+ Oscillations Produced by the Ca2+-sensing Receptor Are Mediated by a Phospholipase C/Inositol 1,4,5-Trisphosphate-independent Pathway That Requires G12, Rho, Filamin-A, and the Actin Cytoskeleton. Journal of Biological Chemistry, 2005, 280, 22875-22882.	3.4	86
26	Protein kinase D3 activation and phosphorylation by signaling through Gαq. Biochemical and Biophysical Research Communications, 2005, 335, 270-276.	2.1	11
27	G Protein-coupled Receptor-mediated Phosphorylation of the Activation Loop of Protein Kinase D. Journal of Biological Chemistry, 2004, 279, 34361-34372.	3.4	65
28	Oxidative Stress Induces Protein Kinase C-mediated Activation Loop Phosphorylation and Nuclear Redistribution of Protein Kinase D. Journal of Biological Chemistry, 2004, 279, 27482-27493.	3.4	59
29	Effects of Altered Expression and Localization of Cyclophilin A on Differentiation of p19 Embryonic Carcinoma Cells. Cellular and Molecular Neurobiology, 2003, 23, 929-943.	3.3	14
30	Vasopressinâ€induced intracellular redistribution of protein kinase D in intestinal epithelial cells. Journal of Cellular Physiology, 2003, 196, 483-492.	4.1	24
31	Intracellular redistribution of protein kinase D2 in response to G-protein-coupled receptor agonists. Biochemical and Biophysical Research Communications, 2003, 302, 817-824.	2.1	41
32	Protein Kinase Cν/2/Protein Kinase D3 Nuclear Localization, Catalytic Activation, and Intracellular Redistribution in Response to G Protein-coupled Receptor Agonists. Journal of Biological Chemistry, 2003, 278, 23773-23785.	3.4	80
33	Human Immunodeficiency Virus Nucleocapsid Protein Polymorphisms Modulate the Infectivity of RNA Packaging Mutants. Virology, 2002, 294, 282-288.	2.4	10
34	Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Research, 2002, 62, 1632-40.	0.9	98
35	Protein Kinase D Interacts with Golgi via Its Cysteine-Rich Domain. Biochemical and Biophysical Research Communications, 2001, 287, 21-26.	2.1	25
36	HIV Type 1 Gag and Nucleocapsid Proteins: Cytoskeletal Localization and Effects on Cell Motility. AIDS Research and Human Retroviruses, 2001, 17, 1489-1500.	1.1	31

OSVALDO REY

#	Article	IF	CITATIONS
37	Rapid Protein Kinase D Translocation in Response to G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 2001, 276, 32616-32626.	3.4	92
38	Regulated Nucleocytoplasmic Transport of Protein Kinase D in Response to G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 2001, 276, 49228-49235.	3.4	81
39	Activation Loop Ser744 and Ser748 in Protein Kinase D Are Transphosphorylated in Vivo. Journal of Biological Chemistry, 2001, 276, 32606-32615.	3.4	142
40	The E7 Oncoprotein of Human Papillomavirus Type 16 Interacts with F-Actin in Vitro and in Vivo. Virology, 2000, 268, 372-381.	2.4	28
41	Human Papillomavirus Type 16 E7 Oncoprotein Represses Transcription of Human Fibronectin. Journal of Virology, 2000, 74, 4912-4918.	3.4	18
42	In Vitro Replication and Differentiation of Normal Human Oral Keratinocytes. Experimental Cell Research, 2000, 258, 288-297.	2.6	61
43	Differential gene expression in neoplastic and human papillomavirus-immortalized oral keratinocytes. Oncogene, 1999, 18, 827-831.	5.9	38
44	Impaired nucleotide excision repair in UV-irradiated human oral keratinocytes immortalized with type 16 human papillomavirus genome. Oncogene, 1999, 18, 6997-7001.	5.9	29
45	Cells with High Cyclophilin A Content Support Replication of Human Immunodeficiency Virus Type 1 Gag Mutants with Decreased Ability To Incorporate Cyclophilin A. Journal of Virology, 1998, 72, 303-308.	3.4	44
46	Cryoelectron Microscopic Examination of Human Immunodeficiency Virus Type 1 Virions with Mutations in the Cyclophilin A Binding Loop. Journal of Virology, 1998, 72, 4403-4407.	3.4	22
47	Immunological identification of tacaribe virus proteins. Research in Virology, 1996, 147, 203-211.	0.7	11
48	Quantitative Analysis of the Endogenous Reverse Transcriptase Reactions of HIV Type 1 Variants with Decreased Susceptibility to Azidothymidine and Nevirapine. AIDS Research and Human Retroviruses, 1996, 12, 977-983.	1.1	7
49	HIV-1 Gag Protein Associates with F-actin Present in Microfilaments. Virology, 1996, 220, 530-534.	2.4	116
50	The 5′ region of Tacaribe virus L RNA encodes a protein with a potential metal binding domain. Virology, 1989, 173, 357-361.	2.4	63
51	Tacaribe virus L gene encodes a protein of 2210 amino acid residues. Virology, 1989, 170, 40-47.	2.4	53
52	Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Research, 1987, 7, 309-324.	2.2	92