Rene Verel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935243/publications.pdf

Version: 2024-02-01

126907 118850 3,992 79 33 62 h-index citations g-index papers 89 89 89 4860 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soil phosphomonoesters in large molecular weight material comprise multiple components. Soil Science Society of America Journal, 2022, 86, 345-357.	2.2	1
2	The molecular size continuum of soil organic phosphorus and its chemical associations. Geoderma, 2022, 412, 115716.	5.1	5
3	Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. Journal of the American Chemical Society, 2022, 144, 10377-10385.	13.7	23
4	Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nature Communications, 2022, 13, .	12.8	22
5	Correlating the Structural Evolution of ZnO/Al ₂ O ₃ to Spinel Zinc Aluminate with its Catalytic Performance in Propane Dehydrogenation. Journal of Physical Chemistry C, 2021, 125, 14065-14074.	3.1	14
6	Reduction of Nitrogen Oxides by Hydrogen with Rhodium(I)â€"Platinum(II) Olefin Complexes as Catalysts. Angewandte Chemie - International Edition, 2021, 60, 25372-25380.	13.8	12
7	Methane Transformation over Copper-Exchanged Zeolites: From Partial Oxidation to C–C Coupling and Formation of Hydrocarbons. ACS Catalysis, 2021, 11, 12543-12556.	11.2	17
8	Pathways of Methane Transformation over Copperâ€Exchanged Mordenite as Revealed by Inâ€Situ NMR and IR Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 910-918.	13.8	50
9	Pathways of Methane Transformation over Copperâ€Exchanged Mordenite as Revealed by Inâ€Situ NMR and IR Spectroscopy. Angewandte Chemie, 2020, 132, 920-928.	2.0	34
10	Aluminum Redistribution in ZSM-5 Zeolite upon Interaction with Gaseous Halogens and Hydrogen Halides and Implications in Catalysis. Journal of Physical Chemistry C, 2020, 124, 722-733.	3.1	8
11	Atomic-Scale Insight into the Structure of Metastable \hat{l}^3 -Ga ₂ O ₃ Nanocrystals and their Thermally-Driven Transformation to \hat{l}^2 -Ga ₂ O ₃ . Journal of Physical Chemistry C, 2020, 124, 20578-20588.	3.1	24
12	Oxidative dehydrogenation of propane on silica-supported vanadyl sites promoted with sodium metavanadate. Catalysis Science and Technology, 2020, 10, 7186-7193.	4.1	2
13	Lead-Halide Scalar Couplings in 207Pb NMR of APbX3 Perovskites (A = Cs, Methylammonium,) Tj ETQq1	1.0,78431 3.3	4 rgBT /Ove
14	Transformation of titanium carbide into mesoporous titania for catalysed HBr oxidation. Catalysis Science and Technology, 2020, 10, 4072-4083.	4.1	2
15	Quantitative measures of <i>myo</i> -IP ₆ in soil using solution ³¹ P NMR spectroscopy and spectral deconvolution fitting including a broad signal. Environmental Sciences: Processes and Impacts, 2020, 22, 1084-1094.	3.5	8
16	Bulk and Nanocrystalline Cesium Lead-Halide Perovskites as Seen by Halide Magnetic Resonance. ACS Central Science, 2020, 6, 1138-1149.	11.3	43
17	Reducibility and Dispersion Influence the Activity in Silica-Supported Vanadium-Based Catalysts for the Oxidative Dehydrogenation of Propane: The Case of Sodium Decavanadate. ACS Catalysis, 2020, 10, 2314-2321.	11.2	22
18	Identification of lower-order inositol phosphates (IP ₅ and) Tj ETQq0 0 0 and solution ³¹ P NMR spectroscopy. Biogeosciences, 2020, 17, 5079-5095.	0 rgBT /Ov	erlock 10 Tf 7

#	Article	IF	CITATIONS
19	Low-valent homobimetallic Rh complexes: influence of ligands on the structure and the intramolecular reactivity of Rhâ€"H intermediates. Chemical Science, 2019, 10, 7937-7945.	7.4	15
20	Substituent-controlled, mild oxidative fluorination of iodoarenes: synthesis and structural study of aryl I(<scp>)- and I(<scp>v</scp>)-fluorides. Chemical Science, 2019, 10, 7251-7259.</scp>	7.4	21
21	The structural composition of soil phosphomonoesters as determined by solution 31P NMR spectroscopy and transverse relaxation (T2) experiments. Geoderma, 2019, 345, 31-37.	5.1	16
22	Lanthanum vanadate catalysts for selective and stable methane oxybromination. Journal of Catalysis, 2018, 363, 69-80.	6.2	16
23	Elucidating the Distribution and Speciation of Boron and Cesium in BCsX Zeolite Catalysts for Styrene Production. ChemPhysChem, 2018, 19, 437-445.	2.1	12
24	Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 170 NMR spectroscopy. Beilstein Journal of Organic Chemistry, 2018, 14, 2289-2294.	2,2	0
25	CO ₂ â€toâ€Methanol Hydrogenation on Zirconiaâ€Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface. Angewandte Chemie - International Edition, 2017, 56, 2318-2323.	13.8	435
26	CO ₂ â€toâ€Methanol Hydrogenation on Zirconiaâ€Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metalâ€"Support Interface. Angewandte Chemie, 2017, 129, 2358-2363.	2.0	51
27	Influence of aluminates on the hydration kinetics of tricalcium silicate. Cement and Concrete Research, 2017, 100, 245-262.	11.0	146
28	Solid-State NMR: Surface Chemistry Applications. , 2017, , 121-127.		9
29	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. Angewandte Chemie, 2016, 128, 15848-15852.	2.0	3
30	Innenrýcktitelbild: Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate (Angew. Chem. 50/2016). Angewandte Chemie, 2016, 128, 15909-15909.	2.0	0
31	Role of Tricoordinate Al Sites in CH ₃ ReO ₃ /Al ₂ O ₃ Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2016, 138, 6774-6785.	13.7	42
32	Probing the molecular character of periodic mesoporous organosilicates via photoluminescence of Lewis acid–base adducts. Physical Chemistry Chemical Physics, 2016, 18, 13746-13749.	2.8	3
33	Improved Supported Metal Oxides for the Oxidative Dehydrogenation of Propane. Topics in Catalysis, 2016, 59, 1545-1553.	2.8	27
34	The reactivity of acyl chlorides towards sodium phosphaethynolate, Na(OCP): a mechanistic case study. Chemical Science, 2016, 7, 6125-6131.	7.4	32
35	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. Angewandte Chemie - International Edition, 2016, 55, 15619-15623.	13.8	14
36	Elucidation of Anchoring and Restructuring Steps during Synthesis of Silica-Supported Vanadium Oxide Catalysts. Chemistry of Materials, 2016, 28, 5495-5504.	6.7	39

#	Article	IF	CITATIONS
37	Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catalysis Science and Technology, 2016, 6, 1621-1631.	4.1	45
38	Silica-Grafted SnIVCatalysts in Hydrogen-Transfer Reactions. ChemCatChem, 2015, 7, 3190-3190.	3.7	0
39	Aluminum Redistribution during the Preparation of Hierarchical Zeolites by Desilication. Chemistry - A European Journal, 2015, 21, 14156-14164.	3.3	44
40	Silicaâ€Grafted Sn ^{IV} Catalysts in Hydrogenâ€Transfer Reactions. ChemCatChem, 2015, 7, 3270-3278.	3.7	24
41	Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 2015, 5, 5787-5793.	11.2	75
42	Surface Chemistry of Hydrophobic Silica Aerogels. Chemistry of Materials, 2015, 27, 6737-6745.	6.7	100
43	Direct evidence of the effect of synthesis conditions on aluminum siting in zeolite ferrierite: A 27Al MQ MAS NMR study. Microporous and Mesoporous Materials, 2014, 193, 111-114.	4.4	30
44	Hydrophobization of Silica Aerogels: Insights from Quantitative Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 25545-25554.	3.1	38
45	A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chemistry, 2014, 16, 1176-1186.	9.0	59
46	Thermal restructuring of silica-grafted –CrO2Cl and –VOCl2 species. Dalton Transactions, 2013, 42, 12725.	3.3	20
47	Thermal Restructuring of Silicaâ€Grafted TiCl _{<i>x</i>} Species and Consequences for Epoxidation Catalysis. Chemistry - A European Journal, 2013, 19, 9849-9858.	3.3	25
48	Crystal and Electronic Structure of the Lithiumâ€Rich Silver Silicide Li ₁₂ Ag _{1â^'<i>x</i>} Si ₄ (<i>x</i> =0.15). Chemistry - A European Journal, 2013, 19, 16528-16531.	3.3	6
49	Aluminum coordination in rhyolite and andesite glasses and melts: Effect of temperature, pressure, composition and water content. Geochimica Et Cosmochimica Acta, 2012, 77, 11-26.	3.9	38
50	Low-Temperature Preparation of Tailored Carbon Nanostructures in Water. Nano Letters, 2012, 12, 2573-2578.	9.1	34
51	Direct Electrophilic Nâ€Trifluoromethylation of Azoles by a Hypervalent Iodine Reagent. Angewandte Chemie - International Edition, 2012, 51, 6511-6515.	13.8	105
52	Properties of the DREAM scheme and its optimization for application to proteins. Journal of Biomolecular NMR, 2012, 53, 103-112.	2.8	23
53	A supplementary coil for 2H decoupling with commercial HCN MAS probes. Journal of Magnetic Resonance, 2012, 214, 76-80.	2.1	13
54	Probing Water Accessibility in HET-s(218–289) Amyloid Fibrils by Solid-State NMR. Journal of Molecular Biology, 2011, 405, 765-772.	4.2	33

#	Article	IF	Citations
55	SrO·Al2O3 mixed oxides: A promising class of catalysts for oxidative coupling of methane. Journal of Catalysis, 2011, 281, 241-253.	6.2	31
56	A Protonâ€Detected 4D Solidâ€State NMR Experiment for Protein Structure Determination. ChemPhysChem, 2011, 12, 915-918.	2.1	160
57	Protocols for the Sequential Solidâ€State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa Protein: HETâ€s(1â€227). ChemBioChem, 2010, 11, 1543-1551.	2.6	126
58	Direct Detection of ^{3h} <i>J</i> _{NC′} Hydrogenâ€Bond Scalar Couplings in Proteins by Solidâ€5tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 9322-9325.	13.8	51
59	Characterization of different water pools in solid-state NMR protein samples. Journal of Biomolecular NMR, 2009, 45, 319-327.	2.8	239
60	Polymorphism in an Amyloidâ€Like Fibrilâ€Forming Model Peptide. Angewandte Chemie - International Edition, 2008, 47, 5842-5845.	13.8	53
61	Polarization Transfer over the Water–Protein Interface in Solids. Angewandte Chemie - International Edition, 2008, 47, 5851-5854.	13.8	44
62	Atomic Models of De Novo Designed ccî²-Met Amyloid-Like Fibrils. Journal of Molecular Biology, 2008, 376, 898-912.	4.2	34
63	29Si NMR spectroscopy of silica glass: T1 relaxation and constraints on the Si–O–Si bond angle distribution. Chemical Geology, 2008, 256, 269-277.	3.3	65
64	The fold of \hat{l} ±-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8637-8642.	7.1	499
65	EFFECT OF CLIMATE AND VEGETATION ON SOIL ORGANIC CARBON, HUMUS FRACTIONS, ALLOPHANES, IMOGOLITE, KAOLINITE, AND OXYHYDROXIDES IN VOLCANIC SOILS OF ETNA (SICILY). Soil Science, 2007, 172, 673-691.	0.9	46
66	Structural control on bulk melt properties: Single and double quantum 29Si NMR spectroscopy on alkali-silicate glasses. Geochimica Et Cosmochimica Acta, 2007, 71, 6002-6018.	3.9	89
67	Improved resolution in 13C solid-state spectra through spin-state-selection. Journal of Magnetic Resonance, 2007, 184, 322-329.	2.1	27
68	Amyloids and Prions: structure, conformations and conformational transitions as seen by NMR. FASEB Journal, 2007, 21, A96.	0.5	0
69	Polarization-Transfer Methods in Solid-State Magic-Angle-Spinning NMR: Adiabatic CN Pulse Sequences. ChemPhysChem, 2004, 5, 851-862.	2.1	13
70	Fast MAS Total Through-Bond Correlation Spectroscopy. Journal of Magnetic Resonance, 2001, 148, 459-464.	2.1	98
71	Adiabatic Dipolar Recoupling in Solid-State NMR: The DREAM Scheme. Journal of Magnetic Resonance, 2001, 150, 81-99.	2.1	189
72	INADEQUATE-CR Experiments in the Solid State. Journal of Magnetic Resonance, 1999, 140, 300-303.	2.1	44

#	Article	IF	CITATION
73	A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques. Chemical Physics Letters, 1998, 287, 421-428.	2.6	128
74	The mechanism of the colour shift of astaxanthin in \hat{l}_{\pm} -crustacyanin as investigated by 13C MAS NMR and specific isotope enrichment. Pure and Applied Chemistry, 1997, 69, 2085-2090.	1.9	20
75	J cross polarization in magic-angle-spinning NMR. Chemical Physics Letters, 1997, 266, 465-472.	2.6	20
76	Adiabatic homonuclear polarization transfer in magic-angle-spinning solid-state NMR1Presented in part at the 38th ENC conference, March 23–27, 1997, Orlando, Florida, USA.1. Chemical Physics Letters, 1997, 280, 31-39.	2.6	58
77	Determination of the spin density distribution in the organic conductor DMTM(TCNQ)2 with 13C magic angle spinning NMR. Molecular Physics, 1997, 91, 725-730.	1.7	0
78	Reduction of Nitrogen Oxides by Hydrogen with Rh(I) $\hat{a}\in Pt(II)$ Olefin Complexes as Catalysts. Angewandte Chemie, 0 , , .	2.0	3
79	Magnetic Resonance Spectroscopy of Bulk and Nanocrystalline Cesium Lead Halide Perovskites. , 0, , .		0