Moritz F Kircher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935202/publications.pdf

Version: 2024-02-01

		109321	161849
57	5,158	35	54
papers	citations	h-index	g-index
60	60	60	7012
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics, 2022, 6, 10-30.	5. 2	31
2	Visualizing surface marker expression and intratumoral heterogeneity with SERRS-NPs imaging. Nanotheranostics, 2022, 6, 256-269.	5.2	6
3	Multiplexed imaging in oncology. Nature Biomedical Engineering, 2022, 6, 527-540.	22.5	53
4	DNA-Functionalized Gold Nanorods for Perioperative Optical Imaging and Photothermal Therapy of Triple-Negative Breast Cancer. ACS Applied Nano Materials, 2022, 5, 9159-9169.	5.0	10
5	Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews, 2021, 50, 556-568.	38.1	82
6	Theranostics: Agents for Diagnosis and Therapy. , 2021, , 655-677.		3
7	Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging. Theranostics, 2021, 11, 2534-2549.	10.0	11
8	DNA Nanostructures and DNAâ€Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	11.2	47
9	Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nature Biomedical Engineering, 2020, 4, 686-703.	22.5	65
10	Non-invasive <i>In Vivo</i> Imaging of Cancer Using Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS). Theranostics, 2019, 9, 5899-5913.	10.0	94
11	Distorted Phthalocyanines by Click Chemistry: Photoacoustic, Photothermal, and Surfaceâ€Enhanced Resonance Raman Studies. Chemistry - A European Journal, 2019, 25, 14517-14521.	3.3	6
12	Integrating Nanotechnology into Cancer Care. ACS Nano, 2019, 13, 7370-7376.	14.6	102
13	Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Scientific Reports, 2019, 9, 8550.	3.3	16
14	DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nature Communications, 2019, 10, 1926.	12.8	86
15	Surface-enhanced Resonance Raman Scattering Nanoprobe Ratiometry for Detecting Microscopic Ovarian Cancer via Folate Receptor Targeting. Journal of Visualized Experiments, 2019, , .	0.3	6
16	Detection of Premalignant Gastrointestinal Lesions Using Surface-Enhanced Resonance Raman Scattering–Nanoparticle Endoscopy. ACS Nano, 2019, 13, 1354-1364.	14.6	40
17	Multi-center study finds postoperative residual non-enhancing component of glioblastoma as a new determinant of patient outcome. Journal of Neuro-Oncology, 2018, 139, 125-133.	2.9	26
18	Dualâ€Modality Surfaceâ€Enhanced Resonance Raman Scattering and Multispectral Optoacoustic Tomography Nanoparticle Approach for Brain Tumor Delineation. Small, 2018, 14, e1800740.	10.0	78

#	Article	IF	CITATIONS
19	Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chemical Science, 2018, 9, 5646-5657.	7.4	25
20	WST11 Vascular Targeted Photodynamic Therapy Effect Monitoring by Multispectral Optoacoustic Tomography (MSOT) in Mice. Theranostics, 2018, 8, 723-734.	10.0	45
21	How can we apply the use of surface-enhanced Raman scattering nanoparticles in tumor imaging?. Nanomedicine, 2017, 12, 171-174.	3.3	13
22	Molecular Imaging in Nanotechnology and Theranostics. Molecular Imaging and Biology, 2017, 19, 363-372.	2.6	32
23	Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nature Protocols, 2017, 12, 1400-1414.	12.0	121
24	Gold Nanoparticles: Surfactantâ€Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis (Adv. Mater. 21/2017). Advanced Materials, 2017, 29, .	21.0	2
25	Surfactantâ€Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis. Advanced Materials, 2017, 29, 1605622.	21.0	77
26	Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases. Nanoscale, 2017, 9, 1110-1119.	5.6	41
27	Folate-Targeted Surface-Enhanced Resonance Raman Scattering Nanoprobe Ratiometry for Detection of Microscopic Ovarian Cancer. ACS Nano, 2017, 11, 1488-1497.	14.6	113
28	MUC1 Aptamer Targeted SERS Nanoprobes. Advanced Functional Materials, 2017, 27, 1606632.	14.9	76
29	Chelator-Free Radiolabeling of SERRS Nanoparticles for Whole-Body PET and Intraoperative Raman Imaging. Theranostics, 2017, 7, 3068-3077.	10.0	49
30	High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe. Theranostics, 2016, 6, 1075-1084.	10.0	96
31	Performance of a Multispectral Optoacoustic Tomography (MSOT) System equipped with 2D vs. 3D Handheld Probes for Potential Clinical Translation. Photoacoustics, 2016, 4, 1-10.	7.8	90
32	Lymph Node Micrometastases and In-Transit Metastases from Melanoma: In Vivo Detection with Multispectral Optoacoustic Imaging in a Mouse Model. Radiology, 2016, 280, 137-150.	7.3	52
33	Imaging of Liver Tumors Using Surface-Enhanced Raman Scattering Nanoparticles. ACS Nano, 2016, 10, 5015-5026.	14.6	139
34	Stable Radiolabeling of Sulfur-Functionalized Silica Nanoparticles with Copper-64. Nano Letters, 2016, 16, 5601-5604.	9.1	51
35	Magnetic Resonanance Imaging of the Liver (Including Biliary Contrast Agents)â€"Part 2: Protocols for Liver Magnetic Resonanance Imaging and Characterization of Common Focal Liver Lesions. Seminars in Roentgenology, 2016, 51, 317-333.	0.6	14
36	Ultra-high sensitivity imaging of cancer using SERRS nanoparticles. , 2016, , .		0

#	Article	IF	Citations
37	Detection of Lymph Node Metastases with SERRS Nanoparticles. Molecular Imaging and Biology, 2016, 18, 677-685.	2.6	33
38	Silica Nanoparticles as Substrates for Chelator-free Labeling of Oxophilic Radioisotopes. Nano Letters, 2015, 15, 864-868.	9.1	102
39	Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nature Communications, 2015, 6, 6570.	12.8	110
40	Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 2015, 7, 271ra7.	12.4	236
41	Surface-Enhanced Raman Spectroscopy: A New Modality for Cancer Imaging. Journal of Nuclear Medicine, 2015, 56, 1295-1299.	5.0	78
42	A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors. Micron, 2015, 68, 70-76.	2.2	27
43	Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner. ACS Nano, 2014, 8, 9755-9766.	14.6	242
44	Determination on the Structure of Au Nanorods with Pentagonal Cross-Sections by Various TEM Techniques. Microscopy and Microanalysis, 2014, 20, 868-869.	0.4	0
45	Frontispiz: A "Schizophotonic―All-In-One Nanoparticle Coating for Multiplexed SE(R)RS Biomedical Imaging. Angewandte Chemie, 2014, 126, n/a-n/a.	2.0	0
46	Frontispiece: A "Schizophotonic―All-In-One Nanoparticle Coating for Multiplexed SE(R)RS Biomedical Imaging. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	13.8	0
47	A "Schizophotonic―Allâ€Inâ€One Nanoparticle Coating for Multiplexed SE(R)RS Biomedical Imaging. Angewandte Chemie - International Edition, 2014, 53, 11756-11761.	13.8	39
48	Molecular Body Imaging: MR Imaging, CT, and US. Part I. Principles. Radiology, 2012, 263, 633-643.	7.3	193
49	Molecular imaging for personalized cancer care. Molecular Oncology, 2012, 6, 182-195.	4.6	150
50	A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Medicine, 2012, 18, 829-834.	30.7	1,029
51	Molecular Body Imaging: MR Imaging, CT, and US. Part II. Applications. Radiology, 2012, 264, 349-368.	7.3	61
52	Noninvasive cell-tracking methods. Nature Reviews Clinical Oncology, 2011, 8, 677-688.	27.6	439
53	Raman's "Effect―on Molecular Imaging. Journal of Nuclear Medicine, 2011, 52, 1839-1844.	5.0	84
54	Ingestion of magnetic foreign bodies causing multiple bowel perforations. Pediatric Radiology, 2007, 37, 933-936.	2.0	35

#	Article	IF	CITATIONS
55	In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Research, 2003, 63, 6838-46.	0.9	307
56	Frequency, Sensitivity, and Specificity of Individual Signs of Diverticulitis on Thin-Section Helical CT with Colonic Contrast Material: Experience with 312 Cases. American Journal of Roentgenology, 2002, 178, 1313-1318.	2.2	135
57	Ratio Imaging of Enzyme Activity Using Dual Wavelength Optical Reporters. Molecular Imaging, 2002, 1 , 89-95.	1.4	29