
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7935180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	47.7	2,051
2	Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chemical Society Reviews, 2013, 42, 3371.	38.1	1,079
3	Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590.	38.1	906
4	Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chemical Society Reviews, 2013, 42, 5522.	38.1	584
5	Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Accounts of Chemical Research, 2014, 47, 1338-1348.	15.6	542
6	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	11.2	426
7	Fe ₃ O ₄ (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chemistry, 2016, 18, 3184-3209.	9.0	342
8	Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catalysis Science and Technology, 2012, 2, 1113.	4.1	341
9	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	12.2	291
10	Silica-decorated magnetic nanocomposites for catalytic applications. Coordination Chemistry Reviews, 2015, 288, 118-143.	18.8	268
11	Solventâ€Free and Catalystsâ€Free Chemistry: A Benign Pathway to Sustainability. ChemSusChem, 2014, 7, 24-44.	6.8	255
12	Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2019, 244, 272-283.	20.2	235
13	Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chemistry, 2015, 17, 3207-3230.	9.0	191
14	Regio―and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic FerriteNickel Nanoparticles (Fe ₃ O ₄ Ni) by Using Glycerol as a Hydrogen Source. Chemistry - A European Journal, 2012, 18, 12628-12632.	3.3	175
15	Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chemistry, 2013, 15, 1895.	9.0	168
16	Magnetically recyclable magnetite–ceria (Nanocat-Fe-Ce) nanocatalyst – applications in multicomponent reactions under benign conditions. Green Chemistry, 2013, 15, 1226.	9.0	147
17	Ag@Co _{<i>x</i>} P Core–Shell Heterogeneous Nanoparticles as Efficient Oxygen Evolution Reaction Catalysts. ACS Catalysis, 2017, 7, 7038-7042.	11.2	144
18	Microwave-assisted synthesis – Catalytic applications in aqueous media. Coordination Chemistry Reviews, 2015, 291, 68-94.	18.8	136

#	Article	IF	CITATIONS
19	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	47.7	136
20	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	10.0	135
21	Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catalysis Science and Technology, 2011, 1, 1653.	4.1	133
22	The Rise of Magnetically Recyclable Nanocatalysts. ChemCatChem, 2014, 6, 3312-3313.	3.7	130
23	Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323.	21.0	129
24	Carbon Nitrideâ€Based Ruthenium Single Atom Photocatalyst for CO ₂ Reduction to Methanol. Small, 2021, 17, e2006478.	10.0	124
25	A novel catalyst for the Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate under solvent free conditions. Catalysis Communications, 2006, 7, 931-935.	3.3	119
26	Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. Bulletin of the Chemical Society of Japan, 2020, 93, 1459-1496.	3.2	114
27	A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol. RSC Advances, 2012, 2, 6144.	3.6	99
28	An efficient and expeditious Fmoc protection of amines and amino acids in aqueous media. Green Chemistry, 2011, 13, 3355.	9.0	90
29	Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Science of the Total Environment, 2021, 783, 147004.	8.0	88
30	Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe ₂ O ₃ –Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes. Green Chemistry, 2016, 18, 2363-2373.	9.0	87
31	Chemoselective transfer hydrogenation reactions over nanosized γ-Fe2O3 catalyst prepared by novel combustion route. Catalysis Communications, 2007, 8, 1803-1806.	3.3	86
32	First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Advances, 2013, 3, 1050-1054.	3.6	84
33	Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis. Applied Sciences (Switzerland), 2013, 3, 656-674.	2.5	81
34	Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels. Green Chemistry, 2015, 17, 146-156.	9.0	81
35	Catalytic applications of a versatile magnetically separable Fe–Mo (Nanocat-Fe–Mo) nanocatalyst. Green Chemistry, 2013, 15, 682.	9.0	80
36	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	38.1	79

#	Article	IF	CITATIONS
37	Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions. ACS Sustainable Chemistry and Engineering, 2014, 2, 1699-1706.	6.7	75
38	Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions. Green Chemistry, 2014, 16, 4137-4143.	9.0	75
39	A Recyclable Ferrite–Co Magnetic Nanocatalyst for the Oxidation of Alcohols to Carbonyl Compounds. ChemPlusChem, 2012, 77, 865-871.	2.8	74
40	A benign synthesis of 2-amino-4H-chromene in aqueous medium using hydrotalcite (HT) as a heterogeneous base catalyst. Catalysis Science and Technology, 2013, 3, 2050.	4.1	71
41	Magnetically recyclable magnetite–palladium (Nanocat-Fe–Pd) nanocatalyst for the Buchwald–Hartwig reaction. Green Chemistry, 2014, 16, 3494-3500.	9.0	70
42	Syntheses of N-Doped Carbon Quantum Dots (NCQDs) from Bioderived Precursors: A Timely Update. ACS Sustainable Chemistry and Engineering, 2021, 9, 3-49.	6.7	70
43	In Situ Generation of Pd–Pt Core–Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins. ACS Applied Materials & Interfaces, 2017, 9, 2815-2824.	8.0	67
44	Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 2022, 5, 20-29.	34.4	65
45	Singleâ€Atom Catalysts. Small, 2021, 17, e2101584.	10.0	60
46	Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid. Green Chemistry, 2016, 18, 5586-5593.	9.0	59
47	An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure. Scientific Reports, 2018, 8, 1901.	3.3	59
48	Gold nanoparticle-decorated graphene oxide: Synthesis and application in oxidation reactions under benign conditions. Journal of Molecular Catalysis A, 2016, 424, 121-127.	4.8	57
49	Graphite-supported ultra-small copper nanoparticles – Preparation, characterization and catalysis applications. Carbon, 2015, 93, 974-983.	10.3	55
50	Maghemiteâ€Copper Nanocomposites: Applications for Ligandâ€Free Crossâ€Coupling (Câ^'O, Câ^'S, and Câ^'N) Reactions. ChemCatChem, 2015, 7, 3495-3502.	3.7	54
51	Fe(0)-embedded thermally reduced graphene oxide as efficient nanocatalyst for reduction of nitro compounds to amines. Chemical Engineering Journal, 2020, 382, 122469.	12.7	54
52	Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5727-5730.	2.2	53
53	Silica-Based Magnetic Manganese Nanocatalyst – Applications in the Oxidation of Organic Halides and Alcohols. ACS Sustainable Chemistry and Engineering, 2016, 4, 1123-1130.	6.7	52
54	P―and F oâ€doped Carbon Nitride Nanocatalysts for Photocatalytic CO ₂ Reduction and Thermocatalytic Furanics Synthesis from Sugars. ChemSusChem, 2020, 13, 5231-5238.	6.8	52

#	Article	IF	CITATIONS
55	Mixed metal MgO–ZrO ₂ nanoparticleâ€catalyzed Oâ€ <i>tert</i> â€Boc protection of alcohols and phenols under solventâ€free conditions. Applied Organometallic Chemistry, 2012, 26, 395-400.	3.5	51
56	Integrated nanocatalysts: a unique class of heterogeneous catalysts. Journal of Materials Chemistry A, 2015, 3, 8241-8245.	10.3	50
57	Magnetically retrievable MFe2O4 spinel (M = Mn, Co, Cu, Ni, Zn) catalysts for oxidation of benzylic alcohols to carbonyls. RSC Advances, 2014, 4, 6597.	3.6	47
58	Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chemistry, 2018, 20, 3542-3556.	9.0	47
59	Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catalysis, 2022, 12, 5605-5660.	11.2	46
60	Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite–Pd nanocomposites. Catalysis Science and Technology, 2016, 6, 152-160.	4.1	45
61	A novel sol–gel synthesized catalyst for Friedel–Crafts benzoylation reaction under solvent-free conditions. Journal of Molecular Catalysis A, 2005, 241, 151-155.	4.8	44
62	Cross-aldol and Knoevenagel condensation reactions in aqueous micellar media. Catalysis Communications, 2008, 9, 1010-1016.	3.3	44
63	Baseâ€Free Transfer Hydrogenation of Nitroarenes Catalyzed by Microâ€Mesoporous Iron Oxide. ChemCatChem, 2016, 8, 2351-2355.	3.7	44
64	Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Scientific Reports, 2017, 7, 11585.	3.3	44
65	Ultra-small cobalt nanoparticles from molecularly-defined Co–salen complexes for catalytic synthesis of amines. Chemical Science, 2020, 11, 2973-2981.	7.4	43
66	The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO ₂ Fixation. Advanced Materials Interfaces, 2021, 8, 2001822.	3.7	43
67	Micro–mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. Journal of Materials Chemistry A, 2016, 4, 596-604.	10.3	42
68	Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. ChemSusChem, 2020, 13, 3288-3305.	6.8	42
69	Ecofriendly and facile Nano ZnO catalyzed solvent-free enamination of 1,3-dicarbonyls. Tetrahedron Letters, 2012, 53, 3857-3860.	1.4	41
70	Significant Enhancement of Photoactivity in Hybrid TiO ₂ /g-C ₃ N ₄ Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures. ACS Applied Nano Materials, 2018, 1, 2526-2535.	5.0	40
71	Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes. Dalton Transactions, 2020, 49, 10431-10440.	3.3	40
72	Single Coâ€Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small, 2021, 17, e2006477.	10.0	40

#	Article	IF	CITATIONS
73	Magnetically recyclable γ-Fe2O3–HAP nanoparticles for the cycloaddition reaction of alkynes, halides and azides in aqueous media. RSC Advances, 2013, 3, 8184.	3.6	39
74	An Earthâ€Abundant Niâ€Based Singleâ€Atom Catalyst for Selective Photodegradation of Pollutants. Solar Rrl, 2021, 5, 2100176.	5.8	39
75	An efficient and chemoselective Cbz-protection of amines using silica–sulfuric acid at room temperature. Tetrahedron Letters, 2007, 48, 8170-8173.	1.4	38
76	Nano-MgO–ZrO2 mixed metal oxides: characterization by SIMS and application in the reduction of carbonyl compounds and in multicomponent reactions. RSC Advances, 2013, 3, 3611.	3.6	38
77	Graphitic Carbon Nitride–Nickel Catalyst: From Material Characterization to Efficient Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7244-7255.	6.7	38
78	Reusable Co-nanoparticles for general and selective <i>N</i> -alkylation of amines and ammonia with alcohols. Chemical Science, 2021, 13, 111-117.	7.4	35
79	Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide. Applied Materials Today, 2017, 7, 179-184.	4.3	34
80	Disproportionation route to monodispersed copper nanoparticles for the catalytic synthesis of propargylamines. RSC Advances, 2013, 3, 19812.	3.6	31
81	Synthesis of Iron Oxide Palladium Nanoparticles and Their Catalytic Applications for Direct Coupling of Acyl Chlorides with Alkynes. ChemPlusChem, 2016, 81, 1312-1319.	2.8	30
82	Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 2388-2399.	6.7	29
83	Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia. Catalysis Communications, 2008, 9, 1728-1733.	3.3	28
84	The Role of Carbon-Based Materials for Fuel Cells Performance. Carbon, 2022, 198, 301-352.	10.3	28
85	A novel N-alkylation of amines by alkyl halides on mixed oxides at room temperature. Catalysis Communications, 2007, 8, 576-582.	3.3	26
86	Utilization of Waste Biomass for the Synthesis of Functionalizable Support for Covalent Anchoring of Active Organo Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 3018-3026.	6.7	26
87	Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation. Applied Catalysis B: Environmental, 2020, 277, 119248.	20.2	26
88	Silica Sulfuric Acid and Related Solid-supported Catalysts as Versatile Materials for Greener Organic Synthesis. Current Organic Synthesis, 2014, 11, 526-544.	1.3	25
89	Pd@Pt Core–Shell Nanoparticles with Branched Dandelionâ€like Morphology as Highly Efficient Catalysts for Olefin Reduction. Chemistry - A European Journal, 2016, 22, 1577-1581.	3.3	24
90	A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chemistry, 2022, 24, 3502-3573.	9.0	23

#	Article	IF	CITATIONS
91	Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts, 2022, 12, 94.	3.5	22
92	Iron-Oxide-Supported Ultrasmall ZnO Nanoparticles: Applications for Transesterification, Amidation, and O-Acylation Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3314-3320.	6.7	21
93	Nitrogen-doped nanocarbons (NNCs): Current status and future opportunities. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 67-76.	5.9	21
94	Calcium phosphate nanocapsule crowned multiwalled carbon nanotubes for pH triggered intracellular anticancer drug release. Journal of Materials Chemistry B, 2015, 3, 3931-3939.	5.8	20
95	N-Graphitic Modified Cobalt Nanoparticles Supported on Graphene for Tandem Dehydrogenation of Ammonia–Borane and Semihydrogenation of Alkynes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11058-11068.	6.7	20
96	A catalyst-free N-benzyloxycarbonylation of amines in aqueous micellar media at room temperature. Tetrahedron Letters, 2008, 49, 4799-4803.	1.4	19
97	Environmentally Benign Bioderived Carbon Microspheres-Supported Molybdena Nanoparticles as Catalyst for the Epoxidation Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 904-910.	6.7	19
98	Hexagonal Mesoporous Silica‧upported Copper Oxide (CuO/HMS) Catalyst: Synthesis of Primary Amides from Aldehydes in Aqueous Medium. ChemPlusChem, 2017, 82, 467-473.	2.8	18
99	Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Applied Materials Today, 2018, 10, 86-92.	4.3	18
100	Pd doped carbon nitride (Pd-g-C ₃ N ₄): an efficient photocatalyst for hydrogenation <i>via</i> an Al–H ₂ O system and an electrocatalyst towards overall water splitting. Green Chemistry, 2022, 24, 5535-5546.	9.0	18
101	A mild route for one pot synthesis of 5,6-unsubstituted 1,4-dihydropyridines catalyzed by sulphated mixed metal oxides. Catalysis Science and Technology, 2014, 4, 672-680.	4.1	17
102	Phosphorene: Current status, challenges and opportunities. Frontiers of Chemical Science and Engineering, 2019, 13, 296-309.	4.4	17
103	Sulfonated dendritic mesoporous silica nanospheres: a metal-free Lewis acid catalyst for the upgrading of carbohydrates. Green Chemistry, 2020, 22, 1754-1762.	9.0	17
104	A New Synthesis of TE2A—a Potential Bifunctional Chelator for 64Cu. Nuclear Medicine and Molecular Imaging, 2010, 44, 185-192.	1.0	15
105	Greener iodination of arenes using sulphated ceria–zirconia catalysts in polyethylene glycol. RSC Advances, 2014, 4, 6267.	3.6	15
106	Hexagonal Mesoporous Silica Supported Ultrasmall Copper Oxides for Oxidative Amidation of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 12935-12945.	6.7	14
107	Unlocking the catalytic potency of a magnetic responsive CoFe ₂ O ₄ /Ni-BTC MOF composite for the sustainable synthesis of tri- and tetra-substituted imidazoles. Materials Chemistry Frontiers, 2021, 5, 7343-7355.	5.9	14
108	Convenient and Reusable Manganeseâ€Based Nanocatalyst for Amination of Alcohols. ChemCatChem, 2021, 13, 4334-4341.	3.7	14

#	Article	IF	CITATIONS
109	Sequential synthesis of β-amino alcohols using a CeO2–ZrO2 bifunctional catalyst system. Catalysis Science and Technology, 2013, 3, 1308.	4.1	13
110	A synthesis of copper based metal-organic framework for O-acetylation of alcohols. Catalysis Communications, 2014, 44, 24-28.	3.3	13
111	Synthesis and Evaluation of Anticonvulsant Activity of Some Schiff Bases of 7â€Aminoâ€1,3â€dihydroâ€2 <i>H</i> â€1,4â€benzodiazepinâ€2â€one. Chemistry and Biodiversity, 2020, 17, e2	0 60 342.	13
112	An advanced plasmonic photocatalyst containing silver(0) single atoms for selective borylation of aryl iodides. Applied Catalysis B: Environmental, 2021, 299, 120674.	20.2	13
113	Mechanochemical synthesis of Cu ₂ S bonded 2D-sulfonated organic polymers: continuous production of dimethyl carbonate (DMC) <i>via</i> preheating of reactants. Green Chemistry, 2020, 22, 5619-5627.	9.0	13
114	Silica-Coated Magnetic Nano-Particles: Application in Catalysis. ACS Symposium Series, 2016, , 1-38.	0.5	12
115	Surface engineered Iridium-based magnetic photocatalyst paving a path towards visible light driven C-H arylation and cyanation reaction. Journal of Catalysis, 2021, 401, 297-308.	6.2	12
116	SO4 2â°'/SnO2: Efficient, Chemoselective, and Reusable Catalyst for Acylation of Alcohols, Phenols, and Amines at Room Temperature. Synthetic Communications, 2007, 37, 3011-3020.	2.1	11
117	A One Pot Green Synthesis of 3,4 Dihydropyrimidin-2-(1H)-ones/Thiones Catalyzed By MgO-ZrO2 Under Solvent-Free Conditions. Letters in Organic Chemistry, 2012, 9, 12-18.	0.5	9
118	Efficient and sustainable Co3O4 nanocages based nickel catalyst: A suitable platform for the synthesis of quinoxaline derivatives. Molecular Catalysis, 2021, 504, 111454.	2.0	9
119	Chemistry of magnetic covalent organic frameworks (MagCOFs): from synthesis to separation applications. Materials Advances, 2022, 3, 1432-1458.	5.4	9
120	Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols. Nanomaterials, 2018, 8, 246.	4.1	8
121	Singleâ€Atom Catalysis: Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene (Adv.) Tj l	ETQq1 1 (21.0	0.784314 rg
122	Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2100436.	3.7	8
123	Magnetite (Ferrites)-Supported Nano-Catalysts: Sustainable Applications in Organic Transformations. ACS Symposium Series, 2016, , 39-78.	0.5	7
124	Low temperature processed titanium oxide thin-film using scalable wire-bar coating. Materials Research Express, 2019, 6, 126427.	1.6	7
125	AgNWs-a-TiOx: a scalable wire bar coated core–shell nanocomposite as transparent thin film electrode for flexible electronics applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 6454-6464.	2.2	7
126	Developing Benign Ni/g-C ₃ N ₄ Catalysts for CO ₂ Hydrogenation: Activity and Toxicity Study. Industrial & Engineering Chemistry Research, 2022, 61, 10496-10510.	3.7	7

#	Article	IF	CITATIONS
127	Developments in the Reactivity of 2-Methylimidazolium Salts. Journal of Organic Chemistry, 2017, 82, 6232-6241.	3.2	6
128	Rapid and Scalable Wire-bar Strategy for Coating of TiO2 Thin-films: Effect of Post-Annealing Temperatures on Structures and Catalytic Dye-Degradation. Molecules, 2020, 25, 1683.	3.8	6
129	An Earth-abundant cobalt based photocatalyst: visible light induced direct (het)arene C–H arylation and CO ₂ capture. Dalton Transactions, 2022, 51, 2452-2463.	3.3	5
130	Current Trends in Aqueous Mediated Organic Synthesis. , 2014, 03, .		4
131	Sustainable Nanocatalysts for Organic Synthetic Transformations. , 2014, 03, .		3
132	A Sustainable and Efficient Synthesis of Benzyl Phosphonates Using PEG/KI Catalytic System. Frontiers in Chemistry, 2016, 4, 35.	3.6	3
133	Base-free Transfer Hydrogenation of Nitroarenes Catalyzed by Micro-mesoporous Iron Oxide. ChemCatChem, 2016, 8, 2298-2298.	3.7	3
134	ACS Sustainable Chemistry & Engineering Virtual Special Issue on N-Doped Carbon Materials: Synthesis and Sustainable Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 3975-3976.	6.7	2
135	Support Morphology-dependent Activity of Nanocatalysts. RSC Catalysis Series, 2019, , 84-114.	0.1	2
136	Photo-oxidation Technologies for Advanced Water Treatment. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 221-255.	0.5	1
137	Editorial (Thematic Issue: Sustainable Catalysts and Benign Organic Transformations). Current Organic Chemistry, 2015, 19, 665-666.	1.6	0
138	Meet Our Associate Editor:. Current Catalysis, 2016, 5, 161-161.	0.5	0
139	Introduction to surface-modified nanomaterials. , 2022, , xvii-xxix.		0
140	SMN-based catalytic membranes for environmental catalysis. , 2022, , 171-196.		0
141	Surface-modified nanomaterial-based catalytic materials for modern industry applications. , 2022, , 267-288.		0
142	Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels. , 2022, , 131-169.		0