
Jack Bartram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934284/publications.pdf Version: 2024-02-01

IACK RADTDAM

#	Article	IF	CITATIONS
1	Recalcitrant transient abnormal myelopoiesis in neonatal Down syndrome. Pediatric Blood and Cancer, 2022, 69, e29662.	1.5	0
2	Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nature Medicine, 2022, 28, 743-751.	30.7	35
3	Identification of a c-MYB-directed therapeutic for acute myeloid leukemia. Leukemia, 2022, 36, 1541-1549.	7.2	10
4	Highâ€ŧhroughput sequencing of peripheral blood for minimal residual disease monitoring in childhood precursor B•ell acute lymphoblastic leukemia: A prospective feasibility study. Pediatric Blood and Cancer, 2022, 69, e29513.	1.5	3
5	Clinically Applicable Assessment of Tisagenlecleucel CAR T Cell Treatment by Digital Droplet PCR for Copy Number Variant Assessment. International Journal of Molecular Sciences, 2022, 23, 7573.	4.1	2
6	Imatinib for control of bullous skin lesions in a child with familial mastocytosis. British Journal of Haematology, 2021, 194, 945-945.	2.5	0
7	Blinatumomab for paediatric mixed phenotype acute leukaemia. British Journal of Haematology, 2021, 195, 289-292.	2.5	5
8	Graftâ€ <i>versus</i> â€host disease induced by tisagenlecleucel in patients after allogeneic stem cell transplantation. British Journal of Haematology, 2021, 195, 805-811.	2.5	5
9	MRI Patterns in Pediatric CNS Hemophagocytic Lymphohistiocytosis. American Journal of Neuroradiology, 2021, 42, 2077-2085.	2.4	11
10	Clinical Utility of Radiologic Disease Reassessment in the Management of Pediatric B-Cell Non-Hodgkin Lymphoma. Journal of Pediatric Hematology/Oncology, 2021, 43, e380-e384.	0.6	0
11	Failure of Romidepsin to Treat Relapsed/Refractory Peripheral T-Cell Lymphoma in Children: A Single-center Experience. Journal of Pediatric Hematology/Oncology, 2021, 43, e745-e748.	0.6	1
12	A human fetal liver-derived infant MLL-AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nature Communications, 2021, 12, 6905.	12.8	28
13	Outcomes of Children and Young Adults with Acute Lymphoblastic Leukaemia Administered Inotuzumab Pre CAR-T Therapy. Blood, 2021, 138, 1743-1743.	1.4	4
14	ALL Maintenance Treatment for Early Loss of B-Cell Aplasia after Tisagenlecleucel Therapy. Blood, 2021, 138, 3859-3859.	1.4	2
15	CD1a is rarely expressed in pediatric or adult relapsed/refractory T-ALL: implications for immunotherapy. Blood Advances, 2020, 4, 4665-4668.	5.2	11
16	Remdesivir during induction chemotherapy for newly diagnosed paediatric acute lymphoblastic leukaemia with concomitant SARS oVâ€2 infection. British Journal of Haematology, 2020, 190, e274-e276.	2.5	20
17	Monitoring MRD in ALL: Methodologies, technical aspects and optimal time points for measurement. Seminars in Hematology, 2020, 57, 142-148.	3.4	20
18	ARHGEF4 Regulates an Essential Oncogenic Program in t(12;21)â€Associated Acute Lymphoblastic Leukemia. HemaSphere, 2020, 4, e467.	2.7	0

JACK BARTRAM

#	Article	IF	CITATIONS
19	Primary immunodeficiencies and their associated risk of malignancies in children: an overview. European Journal of Pediatrics, 2020, 179, 689-697.	2.7	10
20	A validated novel continuous prognostic index to deliver stratified medicine in pediatric acute lymphoblastic leukemia. Blood, 2020, 135, 1438-1446.	1.4	25
21	Blinatumomab for infant acute lymphoblastic leukemia. Blood, 2020, 135, 1501-1504.	1.4	43
22	Improvements in outcome of childhood acute lymphoblastic leukaemia (ALL) in the UK – a success story of modern medicine through successive UKALL trials and international collaboration. British Journal of Haematology, 2020, 191, 562-567.	2.5	9
23	Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia, 2019, 33, 2241-2253.	7.2	177
24	Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nature Medicine, 2019, 25, 1408-1414.	30.7	394
25	Combining Genotype Profiling with MRD for More Accurate Prognostication in Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S63-S65.	0.4	2
26	Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia, 2019, 33, 2254-2265.	7.2	70
27	Clinical benefit of a highâ€ŧhroughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2019, 66, e27787.	1.5	7
28	Perianal Infections in Children With Acute Myeloid Leukemia: A Report From the Canadian Infection in Acute Myeloid Leukemia Research Group. Journal of the Pediatric Infectious Diseases Society, 2019, 8, 354-357.	1.3	2
29	High throughput sequencing in acute lymphoblastic leukemia reveals clonal architecture of central nervous system and bone marrow compartments. Haematologica, 2018, 103, e110-e114.	3.5	27
30	Targeting acute myeloid leukemia by drug-induced c-MYB degradation. Leukemia, 2018, 32, 882-889.	7.2	78
31	2339. Perianal Infections in Children With Acute Myeloid Leukemia: A Report From the Canadian Infection in Acute Myeloid Leukemia Research Group. Open Forum Infectious Diseases, 2018, 5, S695-S695.	0.9	0
32	Genotype-Specific Minimal Residual Disease Interpretation Improves Stratification in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2018, 36, 34-43.	1.6	147
33	Use of Minimal Residual Disease Assessment to Redefine Induction Failure in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2017, 35, 660-667.	1.6	76
34	Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease. Journal of Molecular Diagnostics, 2016, 18, 494-506.	2.8	31
35	Eye on the B-ALL: B-cell receptor repertoires reveal persistence of numerous B-lymphoblastic leukemia subclones from diagnosis to relapse. Leukemia, 2016, 30, 2312-2321.	7.2	47
36	Excellent outcome of minimal residual disease-defined low-risk patients is sustained with more than 10â€years follow-up: results of UK paediatric acute lymphoblastic leukaemia trials 1997–2003. Archives of Disease in Childhood, 2016, 101, 449-454.	1.9	22

JACK BARTRAM

#	Article	IF	CITATIONS
37	Immunoglobulin/T-Cell Receptor (Ig/TCR) Allele Usage in Normal and on Treatment Bone Marrow Samples in Childhood Acute Lymphoblastic Leukaemia - Implications for NGS Based MRD Analysis. Blood, 2016, 128, 4073-4073.	1.4	2
38	Integrating Genetic Risk Factors with Age, Presenting White Cell Count and MRD Response As Continuous Variables to Predict Relapse in Paediatric Acute Lymphoblastic Leukemia (ALL). Blood, 2016, 128, 603-603.	1.4	0
39	Artificial DNA Templates for the Correction of PCR Bias in Next Generation Sequencing Based MRD Analysis for Childhood Acute Lymphoblastic Leukaemia: The Influence of Secondary DNA Structure. Blood, 2016, 128, 4078-4078.	1.4	0
40	Library Preparation Is the Major Factor Affecting Differences in Results of Immunoglobulin Gene Rearrangements Detection on Two Major Next-Generation Sequencing Platforms. Blood, 2015, 126, 1411-1411.	1.4	1
41	Long Term Overall Survival of Greater Than 98% in Childhood ALL Patients with Good Risk Features and Low Risk MRD:Ã, Results from a Large Multi-Center Randomized Controlled Trial, UKALL 2003. Blood, 2015, 126, 806-806.	1.4	1
42	Integration of Minimal Residual Disease with Other Patient Risk Factors Identifies a Population with Very Poor Overall Survival in Pediatric ALL: Results from the UKALL 2003 Trial. Blood, 2015, 126, 1412-1412.	1.4	0
43	Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to <i>STXBP2/MUNC18â€2</i> mutations. Pediatric Blood and Cancer, 2013, 60, 1215-1222.	1.5	59
44	Excellent Outcome Of MRD Low Risk Patients Is Sustained With Greater Than 10 Years Follow Up – Results Of UK ALL Trials 1997 -2003. Blood, 2013, 122, 2635-2635.	1.4	0
45	Soluble CD163 levels in children with sickle cell disease. British Journal of Haematology, 2011, 153, 105-110.	2.5	12
46	Portacaths are safe for long-term regular blood transfusion in children with sickle cell anaemia. Archives of Disease in Childhood, 2011, 96, 1082-1084.	1.9	20
47	Extracranial internal carotid arterial disease in children with sickle cell anemia. Haematologica, 2010, 95, 1287-1292.	3.5	48
48	Outcome of adults with sickle cell disease admitted to critical care – experience of a single institution in the UK. British Journal of Haematology, 2010, 150, 610-613.	2.5	26
49	Glucose 6 phosphate dehydrogenase deficiency is not associated with cerebrovascular disease in children with sickle cell anemia. Blood, 2009, 114, 742-743.	1.4	36
50	H-type tracheoesophageal fistula masquerading as achalasia cardia in a 13-year-old child. Journal of Paediatrics and Child Health, 2006, 42, 215-216.	0.8	7
51	The "Lasso-o" tape: stretchability and observer variability in head circumference measurement. Archives of Disease in Childhood, 2005, 90, 820-821.	1.9	22