Amparo R Alfonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7934118/publications.pdf

Version: 2024-02-01

167 papers 4,485 citations

94433 37 h-index 54 g-index

193 all docs

193 docs citations

times ranked

193

3387 citing authors

#	Article	IF	CITATIONS
1	First Toxicity Report of Tetrodotoxin and 5,6,11-TrideoxyTTX in the Trumpet Shell Charonia lampas lampas in Europe. Analytical Chemistry, 2008, 80, 5622-5629.	6.5	141
2	First Detection of Tetrodotoxin in Greek Shellfish by UPLC-MS/MS Potentially Linked to the Presence of the Dinoflagellate Prorocentrum minimum. Toxins, 2015, 7, 1779-1807.	3.4	131
3	First Toxin Profile of Ciguateric Fish in Madeira Arquipelago (Europe). Analytical Chemistry, 2010, 82, 6032-6039.	6.5	121
4	An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials, 2016, 97, 34-50.	11.4	117
5	Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxinâ [†] . Biochemical Pharmacology, 2001, 61, 827-833.	4.4	109
6	Yessotoxin, a novel phycotoxin, activates phosphodiesterase activity. Biochemical Pharmacology, 2003, 65, 193-208.	4.4	109
7	New Gastropod Vectors and Tetrodotoxin Potential Expansion in Temperate Waters of the Atlantic Ocean. Marine Drugs, 2012, 10, 712-726.	4.6	90
8	Liquid chromatography–mass spectrometry method to detect Tetrodotoxin and Its analogues in the puffer fish Lagocephalus sceleratus (Gmelin, 1789) from European waters. Food Chemistry, 2012, 132, 1103-1111.	8.2	75
9	Characterization of F-actin depolymerization as a major toxic event induced by pectenotoxin-6 in neuroblastoma cells. Biochemical Pharmacology, 2002, 63, 1979-1988.	4.4	74
10	Calcium pools, calcium entry, and cell growth. Bioscience Reports, 1996, 16, 139-157.	2.4	72
11	Azaspiracid-1, a potent, nonapoptotic new phycotoxin with several cell targets. Cellular Signalling, 2002, 14, 703-716.	3.6	72
12	In Vitro and in Vivo Evaluation of Paralytic Shellfish Poisoning Toxin Potency and the Influence of the pH of Extraction. Analytical Chemistry, 2008, 80, 1770-1776.	6.5	67
13	Functional compartments in rat mast cells for cAMP and calcium on histamine release. Cellular Signalling, 2000, 12, 343-350.	3.6	64
14	Gambierone, a Ladder-Shaped Polyether from the Dinoflagellate <i>Gambierdiscus belizeanus</i> Organic Letters, 2015, 17, 2392-2395.	4.6	60
15	Solid-Phase Radioreceptor Assay for Paralytic Shellfish Toxins. Analytical Biochemistry, 1993, 211, 87-93.	2.4	59
16	Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson's Disease Model. Marine Drugs, 2019, 17, 85.	4.6	59
17	Effects of Azaspiracid-1, A Potent Cytotoxic Agent, on Primary Neuronal Cultures. A Structureâ [^] Activity Relationship Study. Journal of Medicinal Chemistry, 2007, 50, 356-363.	6.4	58
18	A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food Chemistry, 2019, 275, 703-710.	8.2	58

#	Article	IF	CITATIONS
19	Azaspiracid-4 inhibits Ca2+ entry by stored operated channels in human T lymphocytes. Biochemical Pharmacology, 2005, 69, 1627-1636.	4.4	55
20	Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology, 2015, 93, 285-293.	4.1	54
21	First Report of Ciguatoxins in Two Starfish Species: Ophidiaster ophidianus and Marthasterias glacialis. Toxins, 2015, 7, 3740-3757.	3.4	51
22	Maitotoxin-induced calcium entry in human lymphocytes. Cellular Signalling, 2001, 13, 711-716.	3.6	47
23	Effects of Azaspiracids 2 and 3 on Intracellular cAMP, [Ca2+], and pH. Chemical Research in Toxicology, 2004, 17, 1338-1349.	3.3	46
24	Benefit of 13-desmethyl Spirolide C Treatment in Triple Transgenic Mouse Model of Alzheimer Disease: Beta-Amyloid and Neuronal Markers Improvement. Current Alzheimer Research, 2013, 10, 279-289.	1.4	46
25	Resonant mirror biosensor detection method based on yessotoxin–phosphodiesterase interactions. Analytical Biochemistry, 2004, 335, 112-118.	2.4	45
26	Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nature Chemistry, 2019, 11, 342-350.	13.6	45
27	Synthesis and antiallergic activity of pyridothienopyrimidines. Bioorganic and Medicinal Chemistry, 1998, 6, 1911-1925.	3.0	44
28	The problem of toxicity equivalent factors in developing alternative methods to animal bioassays for marine-toxin detection. TrAC - Trends in Analytical Chemistry, 2010, 29, 1316-1325.	11.4	42
29	The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. British Journal of Pharmacology, 2010, 159, 337-344.	5.4	42
30	Pharmacokinetic and toxicological data of spirolides after oral and intraperitoneal administration. Food and Chemical Toxicology, 2012, 50, 232-237.	3.6	42
31	The association of bacterial C9-based TTX-like compounds with Prorocentrum minimum opens new uncertainties about shellfish seafood safety. Scientific Reports, 2017, 7, 40880.	3.3	42
32	A single run UPLC-MS/MS method for detection of all EU-regulated marine toxins. Talanta, 2018, 189, 622-628.	5.5	41
33	Ca2+ Pools and Cell Growth: Arachidonic Acid Induces Recovery of Cells Growth-arrested by Ca2+ Pool Depletion. Journal of Biological Chemistry, 1996, 271, 883-888.	3.4	40
34	Recovery of Ca2+ Pools and Growth in Ca2+Pool-depleted Cells Is Mediated by Specific Epoxyeicosatrienoic Acids Derived from Arachidonic Acid. Journal of Biological Chemistry, 1997, 272, 29546-29553.	3.4	40
35	Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC–MS/MS analysis. Food Chemistry, 2021, 356, 129647.	8.2	40
36	Quantification of yessotoxin using the fluorescence polarization technique and study of the adequate extraction procedure. Analytical Biochemistry, 2005, 344, 266-274.	2.4	39

#	Article	IF	CITATIONS
37	Kinetic Analysis of the Interaction between Yessotoxin and Analogues and Immobilized Phosphodiesterases Using a Resonant Mirror Optical Biosensor. Chemical Research in Toxicology, 2005, 18, 1155-1160.	3.3	39
38	Decrease of marine toxin content in bivalves by industrial processes. Toxicon, 2010, 55, 235-243.	1.6	39
39	Functional assays for marine toxins as an alternative, high-throughput-screening solution to animal tests. TrAC - Trends in Analytical Chemistry, 2009, 28, 603-611.	11.4	38
40	Effects of environmental regimens on the toxin profile of <i>Alexandrium ostenfeldii</i> Environmental Toxicology and Chemistry, 2010, 29, 301-310.	4.3	37
41	Evaluation of toxicity equivalent factors of paralytic shellfish poisoning toxins in seven human sodium channels types by an automated high throughput electrophysiology system. Archives of Toxicology, 2016, 90, 479-488.	4.2	37
42	Synthesis, antihistaminic and cytotoxic activity of pyridothieno- and pyridodithienotriazines. European Journal of Medicinal Chemistry, 1998, 33, 887-897.	5 . 5	36
43	Azaspiracids modulate intracellular pH levels in human lymphocytes. Biochemical and Biophysical Research Communications, 2006, 346, 1091-1099.	2.1	36
44	Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin. Journal of Neuroscience Research, 2006, 83, 1393-1406.	2.9	36
45	Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use As a Reference Method for Marine Toxins: Major Causes for Concern. Analytical Chemistry, 2011, 83, 5903-5911.	6.5	36
46	Palytoxins and cytoskeleton: An overview. Toxicon, 2011, 57, 460-469.	1.6	36
47	Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress. Marine Drugs, 2014, 12, 700-718.	4.6	36
48	Yessotoxin, a Promising Therapeutic Tool. Marine Drugs, 2016, 14, 30.	4.6	36
49	A Novel Ca2+ Entry Mechanism Is Turned On during Growth Arrest Induced by Ca2+ Pool Depletion. Journal of Biological Chemistry, 1995, 270, 26790-26793.	3.4	34
50	Study of the Interaction between Different Phosphodiesterases and Yessotoxin Using a Resonant Mirror Biosensor. Chemical Research in Toxicology, 2006, 19, 794-800.	3.3	33
51	Comparative analysis of pre- and post-column oxidation methods for detection of paralytic shellfish toxins. Toxicon, 2010, 56, 448-457.	1.6	33
52	Oral Toxicity of Okadaic Acid in Mice: Study of Lethality, Organ Damage, Distribution and Effects on Detoxifying Gene Expression. Toxins, 2013, 5, 2093-2108.	3.4	33
53	Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. International Journal of Molecular Sciences, 2021, 22, 1888.	4.1	33
54	First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples. Analytica Chimica Acta, 2011, 701, 200-208.	5 . 4	32

#	Article	IF	CITATIONS
55	Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chemistry, 2019, 294, 60-66.	8.2	32
56	Pyrazolopyrimidines: synthesis, effect on histamine release from rat peritoneal mast cells and cytotoxic activity. European Journal of Medicinal Chemistry, 2001, 36, 321-332.	5 . 5	31
57	A Comparative Study of the Effect of Ciguatoxins on Voltage-Dependent Na ⁺ and K ⁺ Channels in Cerebellar Neurons. Chemical Research in Toxicology, 2011, 24, 587-596.	3. 3	31
58	New Invertebrate Vectors for PST, Spirolides and Okadaic Acid in the North Atlantic. Marine Drugs, 2013, 11, 1936-1960.	4.6	31
59	Mitigation of ROS Insults by Streptomyces Secondary Metabolites in Primary Cortical Neurons. ACS Chemical Neuroscience, 2014, 5, 71-80.	3 . 5	31
60	A rapid microplate fluorescence method to detect yessotoxins based on their capacity to activate phosphodiesterases. Analytical Biochemistry, 2004, 326, 93-99.	2.4	30
61	Evaluation of Various pH and Temperature Conditions on the Stability of Azaspiracids and Their Importance in Preparative Isolation and Toxicological Studies. Analytical Chemistry, 2008, 80, 9672-9680.	6.5	28
62	Caniferolide A, a Macrolide from <i>Streptomyces caniferus</i> , Attenuates Neuroinflammation, Oxidative Stress, Amyloid-Beta, and Tau Pathology in Vitro. Molecular Pharmaceutics, 2019, 16, 1456-1466.	4.6	28
63	Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS. Toxins, 2014, 6, 402-415.	3.4	27
64	Cytotoxic effect of palytoxin on mussel. Toxicon, 2010, 56, 842-847.	1.6	25
65	Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Analytica Chimica Acta, 2014, 850, 57-64.	5 . 4	25
66	Analytical challenges for regulated marine toxins. Detection methods. Current Opinion in Food Science, 2017, 18, 29-36.	8.0	25
67	Purification of five azaspiracids from mussel samples contaminated with DSP toxins and azaspiracids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 865, 133-140.	2.3	24
68	Influence of protein kinase C, cAMP and phosphatase activity on histamine release produced by compound 48/80 and sodium fluoride on rat mast cells. Agents and Actions, 1992, 37, 1-7.	0.7	23
69	Effect of signal transduction pathways on the action of thapsigargin on rat mast cells. Biochemical Pharmacology, 1994, 47, 1813-1820.	4.4	23
70	Comparative study of the stability of saxitoxin and neosaxitoxin in acidic solutions and lyophilized samples. Toxicon, 1994, 32, 1593-1598.	1.6	22
71	Study of the neuronal effects of ouabain and palytoxin and their binding to Na,K-ATPases using an optical biosensor. Toxicon, 2007, 50, 541-552.	1.6	22
72	13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: Human intestinal permeability modelling. Toxicology, 2011, 287, 69-75.	4.2	22

#	Article	IF	CITATIONS
73	Tetrodotoxins Occurrence in Non-Traditional Vectors of the North Atlantic Waters (Portuguese) Tj ETQq1 1 0.784	314 rgBT ,	/gyerlock 1
74	Determination of phosphodiesterase activity in rat mast cells using the fluorescent cAMP analogue anthraniloyl cAMP. Cellular Signalling, 1995, 7, 513-518.	3.6	21
75	Extraction and cleaning methods to detect yessotoxins in contaminated mussels. Analytical Biochemistry, 2007, 363, 228-238.	2.4	21
76	Study of solid phase adsorption of paralytic shellfish poisoning toxins (PSP) onto different resins. Harmful Algae, 2011, 10, 447-455.	4.8	21
77	Monitoring of freshwater toxins in European environmental waters by using novel multiâ€detection methods. Environmental Toxicology and Chemistry, 2017, 36, 645-654.	4.3	21
78	Functional characterization of the Na+-H+ echanger in rat mast cells: crosstalks between different kinase pathways. European Journal of Pharmacology, 1994, 267, 289-296.	2.6	20
79	Palytoxin detection and quantification using the fluorescence polarization technique. Analytical Biochemistry, 2012, 424, 64-70.	2.4	20
80	How Safe Is Safe for Marine Toxins Monitoring?. Toxins, 2016, 8, 208.	3.4	20
81	Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Pflugers Archiv European Journal of Physiology, 2001, 443, 234-239.	2.8	19
82	Characterization of the dinophysistoxin-2 acute oral toxicity in mice to define the Toxicity Equivalency Factor. Food and Chemical Toxicology, 2017, 102, 166-175.	3.6	19
83	Dynamics of co-occurring Alexandrium minutum (Global Clade) and A. tamarense (West European) (Dinophyceae) during a summer bloom in Cork Harbour, Ireland (2006). Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 268-278.	1.4	18
84	Crosstalk between cytosolic pH and intracellular calcium in human lymphocytes:. Cellular Signalling, 2000, 12, 573-581.	3.6	17
85	Detection of new emerging type-A trichothecenes by untargeted mass spectrometry. Talanta, 2018, 178, 37-42.	5.5	17
86	Zoanthamine Alkaloids from the Zoantharian Zoanthus cf. pulchellus and Their Effects in Neuroinflammation. Marine Drugs, 2018, 16, 242.	4.6	17
87	High Serum Cyclophilin C levels as a risk factor marker for Coronary Artery Disease. Scientific Reports, 2019, 9, 10576.	3.3	17
88	Ouabain-induced enhancement of rat mast cells response. Cellular Signalling, 2001, 13, 515-524.	3.6	16
89	Surface Plasmon Resonance Biosensor Method for Palytoxin Detection Based on Na+,K+-ATPase Affinity. Toxins, 2014, 6, 96-107.	3.4	16
90	Spongionella Secondary Metabolites Regulate Store Operated Calcium Entry Modulating Mitochondrial Functioning in SH-SY5Y Neuroblastoma Cells. Cellular Physiology and Biochemistry, 2015, 37, 779-792.	1.6	16

#	Article	IF	CITATIONS
91	The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors. ACS Chemical Neuroscience, 2017, 8, 1609-1617.	3.5	16
92	Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebelar granule cells. Journal of Neuroscience Research, 2006, 84, 326-337.	2.9	15
93	New protocol to obtain spirolides from <i>Alexandrium ostenfeldii</i> cultures with high recovery and purity. Biomedical Chromatography, 2010, 24, 878-886.	1.7	15
94	Role of yessotoxin in calcium and cAMPâ€crosstalks in primary and Kâ€562 human lymphocytes: The effect is mediated by Anchor kinase a mitochondrial proteins. Journal of Cellular Biochemistry, 2012, 113, 3752-3761.	2.6	15
95	Toxin profile in samples collected in fresh and brackish water in Germany. Toxicon, 2014, 91, 35-44.	1.6	15
96	Role of AKAP 149–PKA–PDE4A complex in cell survival and cell differentiation processes. International Journal of Biochemistry and Cell Biology, 2014, 53, 89-101.	2.8	15
97	Identification of Spongionella compounds as cyclosporine A mimics. Pharmacological Research, 2016, 107, 407-414.	7.1	15
98	Tetracyclic Truncated Analogue of the Marine Toxin Gambierol Modifies NMDA, Tau, and Amyloid \hat{l}^2 Expression in Mice Brains: Implications in AD Pathology. ACS Chemical Neuroscience, 2017, 8, 1358-1367.	3.5	15
99	Dimethylsphingosine increases cytosolic calcium and intracellular pH in human T lymphocytes. Biochemical Pharmacology, 2003, 65, 465-478.	4.4	14
100	Streptocyclinones A and B ameliorate Alzheimer's disease pathological processes in vitro. Neuropharmacology, 2018, 141, 283-295.	4.1	14
101	Gracilin A Derivatives Target Early Events in Alzheimer's Disease: in Vitro Effects on Neuroinflammation and Oxidative Stress. ACS Chemical Neuroscience, 2019, 10, 4102-4111.	3.5	14
102	Magnetic nanostructures for marine and freshwater toxins removal. Chemosphere, 2020, 256, 127019.	8.2	14
103	Futunamine, a Pyrrole–Imidazole Alkaloid from the Sponge <i>Stylissa</i> aff. <i>carteri</i> Collected off the Futuna Islands. Journal of Natural Products, 2020, 83, 2299-2304.	3.0	14
104	Single and combined effects of regulated and emerging mycotoxins on viability and mitochondrial function of SH-SY5Y cells. Food and Chemical Toxicology, 2021, 154, 112308.	3.6	14
105	Preparation of mixtures of paralytic shellfish toxin (PSP) standards from mussel hepatopancreas. Fresenius' Journal of Analytical Chemistry, 1993, 345, 212-216.	1.5	13
106	Characterization of the Na ⁺ /Ca ²⁺ Exchanger on Rat Mast Cells. Cellular Physiology and Biochemistry, 1999, 9, 53-71.	1.6	13
107	Crosstalk between cyclophilins and T lymphocytes in coronary artery disease. Experimental Cell Research, 2021, 400, 112514.	2.6	13
108	Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model. PLoS ONE, 2016, 11, e0167572.	2.5	13

#	Article	IF	CITATIONS
109	Study of the stability of gonyautoxins in acidic solution. Fresenius' Journal of Analytical Chemistry, 1994, 349, 465-468.	1.5	12
110	Current situation on analysis of marine toxins. Reviews in Analytical Chemistry, 2013, 32, 15-34.	3.2	12
111	UPLC–MS–IT–TOF Identification of Circumdatins Produced by ⟨i>Aspergillus ochraceus⟨/i>. Journal of Agricultural and Food Chemistry, 2017, 65, 4843-4852.	5.2	12
112	Treasures from the Deep: Characellides as Anti-Inflammatory Lipoglycotripeptides from the Sponge Characella pachastrelloides. Organic Letters, 2019, 21, 246-251.	4.6	12
113	Natural Approaches for Neurological Disorders—The Neuroprotective Potential of Codium tomentosum. Molecules, 2020, 25, 5478.	3.8	12
114	Multi-detection method for mycotoxins with a modified QuEChERS extraction in feed and development of a simple detoxification procedure. Animal Feed Science and Technology, 2021, 272, 114745.	2.2	12
115	Cyclophilins A, B, and C Role in Human T Lymphocytes Upon Inflammatory Conditions. Frontiers in Immunology, 2021, 12, 609196.	4.8	12
116	Effect of lyophilization on the stability of gonyautoxins obtained from contaminated mussels. Toxicon, 1994, 32, 807-817.	1.6	11
117	Influence of Different Shellfish Matrices on the Separation of PSP Toxins Using a Postcolumn Oxidation Liquid Chromatography Method. Toxins, 2015, 7, 1324-1340.	3.4	11
118	Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation. Frontiers in Immunology, 2016, 7, 452.	4.8	11
119	Gracilin-Derivatives as Lead Compounds for Anti-inflammatory Effects. Cellular and Molecular Neurobiology, 2020, 40, 603-615.	3.3	11
120	Study of the activation mechanism of human GRF(1-29)NH2 on rat mast cell histamine release. Inflammation Research, 1995, 44, 87-91.	4.0	10
121	The antineoplastic drug vinorelbine activates non-immunological histamine release from rat mast cells. Inflammation Research, 1997, 46, 119-124.	4.0	9
122	Autumnalamide, a Prenylated Cyclic Peptide from the Cyanobacterium <i>Phormidium autumnale</i> Acts on SH-SY5Y Cells at the Mitochondrial Level. Journal of Natural Products, 2014, 77, 2196-2205.	3.0	9
123	Bromotryptamine and Bromotyramine Derivatives from the Tropical Southwestern Pacific Sponge Narrabeena nigra. Marine Drugs, 2019, 17, 319.	4.6	9
124	First report of Fusarium foetens as a mycotoxin producer. Mycotoxin Research, 2019, 35, 177-186.	2.3	9
125	Disclosing the potential of eleganolone for Parkinson's disease therapeutics: Neuroprotective and anti-inflammatory activities. Pharmacological Research, 2021, 168, 105589.	7.1	9
126	Cyclophilins in Ischemic Heart Disease: Differences Between Acute and Chronic Coronary Artery Disease Patients. Cardiology Research, 2020, 11, 319-327.	1.1	9

#	Article	lF	CITATIONS
127	Neuroprotective effects of fluorophore-labelled manganese complexes: Determination of ROS production, mitochondrial membrane potential and confocal fluorescence microscopy studies in neuroblastoma cells. Journal of Inorganic Biochemistry, 2022, 227, 111670.	3.5	9
128	Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. International Journal of Food Microbiology, 2022, 365, 109556.	4.7	9
129	Câ€kit mutations and PKC crosstalks: PKC translocates to nucleous only in cells HMC ^{560,816} . Journal of Cellular Biochemistry, 2011, 112, 2637-2651.	2.6	8
130	New Invertebrate Vectors of Okadaic Acid from the North Atlantic Waters—Portugal (Azores and) Tj ETQq0 0 (0 rgΒŢ /Ον	erlock 10 Tf 5
131	Evaluation of the Impact of Mild Steaming and Heat Treatment on the Concentration of Okadaic Acid, Dinophysistoxin-2 and Dinophysistoxin-3 in Mussels. Toxins, 2016, 8, 175.	3.4	8
132	Salenâ€'manganese complexes for controlling ROS damage: Neuroprotective effects, antioxidant activity and kinetic studies. Journal of Inorganic Biochemistry, 2020, 203, 110918.	3.5	8
133	Combined Effect of Caspase-Dependent and Caspase-Independent Apoptosis in the Anticancer Activity of Gold Complexes with Phosphine and Benzimidazole Derivatives. Pharmaceuticals, 2021, 14, 10.	3.8	8
134	Effect of purification, theophylline and sodium fluoride on histamine release produced by antineoplastic drugs on rat mast cells. Biochemical Pharmacology, 1992, 44, 533-538.	4.4	7
135	Sodium, PMA and Calcium Play an Important Role on Intracellular pH Modulation in Rat Mast Cells. Cellular Physiology and Biochemistry, 1998, 8, 314-327.	1.6	7
136	STI571 (Glivec®) affects histamine release and intracellular pH after alkalinisation in HMCâ€1 < sup > 560, 816 < /sup > . Journal of Cellular Biochemistry, 2008, 103, 865-876.	2.6	7
137	Influence of the tyrosine kinase inhibitors STI571 (Glivec®), lavendustin A and genistein on human mast cell line (HMCâ€1 ⁵⁶⁰) activation. Journal of Cellular Biochemistry, 2008, 103, 1076-1088.	2.6	7
138	Characterization and Activity Determination of the Human Protein Phosphatase 2A Catalytic Subunit α Expressed in Insect Larvae. Applied Biochemistry and Biotechnology, 2012, 167, 918-928.	2.9	7
139	The Mechanistic Complexities of Phycotoxins. Advances in Molecular Toxicology, 2014, 8, 1-33.	0.4	7
140	Neuroprotective Effects of Appleâ€Derived Drinks in a Mice Model of Inflammation. Molecular Nutrition and Food Research, 2020, 64, e1901017.	3.3	7
141	Anhydroexfoliamycin, a <i>Streptomyces</i> Secondary Metabolite, Mitigates Microglia-Driven Inflammation. ACS Chemical Neuroscience, 2021, 12, 2336-2346.	3.5	7
142	Prolactin induces calcium influx and release from intracellular pools in human T lymphocytes by activation of tyrosine kinases. Cellular Signalling, 2001, 13, 819-826.	3.6	6
143	Calcium-pH Crosstalks in the human mast cell line HMC-1: Intracellular alkalinization activates calcium extrusion through the plasma membrane Ca2+-ATPase. Journal of Cellular Biochemistry, 2006, 99, 1397-1408.	2.6	6
144	Lipophilic toxins occurrence in non-traditional invertebrate vectors from North Atlantic Waters (Azores, Madeira, and Morocco): Update on geographical tendencies and new challenges for monitoring routines. Marine Pollution Bulletin, 2020, 161, 111725.	5.0	6

#	Article	IF	CITATIONS
145	Tavarua Deoxyriboside A and Jasplakinolide as Potential Neuroprotective Agents: Effects on Cellular Models of Oxidative Stress and Neuroinflammation. ACS Chemical Neuroscience, 2021, 12, 150-162.	3.5	6
146	Protein Kinase C Modulates Aurora-kinase Inhibition Induced by CCT129202 in HMC-1560,816 Cell Line. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2013, 12, 265-276.	1.1	6
147	PKC potentiates tyrosine kinase inhibitors STI571 and dasatinib cytotoxic effect. Anticancer Research, 2014, 34, 3347-56.	1.1	6
148	Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines. Frontiers in Pharmacology, 2015, 6, 124.	3.5	5
149	Yessotoxin activates cell death pathways independent of Protein Kinase C in K-562 human leukemic cell line. Toxicology in Vitro, 2015, 29, 1545-1554.	2.4	5
150	Cross-talks between c-Kit and PKC isoforms in HMC-1560 and HMC-1560,816 cells. Different role of PKCδ in each cellular line. Cellular Immunology, 2015, 293, 104-112.	3.0	5
151	Molecular detection of harmful cyanobacteria and expression of their toxin genes in Dutch lakes using multi-probe RNA chips. Harmful Algae, 2018, 72, 25-35.	4.8	5
152	Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells. ACS Chemical Neuroscience, 2018, 9, 2667-2678.	3.5	5
153	Hypertonicity-induced intracellular pH changes in rat mast cells. Life Sciences, 2000, 67, 1969-1982.	4.3	4
154	Pharmacology of Yessotoxni., 0,, 203-209.		4
154 155	Pharmacology of Yessotoxni., 0, , 203-209. Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern― Analytical Chemistry, 2012, 84, 481-483.	6.5	4
	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Ouestion Its Use as a Reference Method for	6.5	
155	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern― Analytical Chemistry, 2012, 84, 481-483. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCÎ′translocation in HMC-1560and HMC-1560,816cell lines. Immunopharmacology		4
155 156	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern― Analytical Chemistry, 2012, 84, 481-483. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCÎ′translocation in HMC-1560and HMC-1560,816cell lines. Immunopharmacology and Immunotoxicology, 2015, 37, 380-387. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct	2.4	4
155 156 157	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern― Analytical Chemistry, 2012, 84, 481-483. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCÎ′translocation in HMC-1560and HMC-1560,816cell lines. Immunopharmacology and Immunotoxicology, 2015, 37, 380-387. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomedicine and Pharmacotherapy, 2022, 149, 112886. Different Role of cAMP Pathway on the Human Mast Cells HMC ⁵⁶⁰ and	2.4 5.6	4 4
155 156 157	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern†Analytical Chemistry, 2012, 84, 481-483. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCî translocation in HMC-1560,816cell lines. Immunopharmacology and Immunotoxicology, 2015, 37, 380-387. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomedicine and Pharmacotherapy, 2022, 149, 112886. Different Role of cAMP Pathway on the Human Mast Cells HMCâ€1 ⁵⁶⁰ and HMCâ€1 ^{560,816} Activation. Journal of Cellular Biochemistry, 2014, 115, 896-909.	2.4 5.6 2.6	4 4 3
155 156 157 158	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern†Analytical Chemistry, 2012, 84, 481-483. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCî translocation in HMC-1560and HMC-1560,816cell lines. Immunopharmacology and Immunotoxicology, 2015, 37, 380-387. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomedicine and Pharmacotherapy, 2022, 149, 112886. Different Role of cAMP Pathway on the Human Mast Cells HMCâ€1 < sup > 560 < /sup > and HMCâ€1 < sup > 560,816 < /sup > Activation. Journal of Cellular Biochemistry, 2014, 115, 896-909. Autumnalamide targeted proteins of the immunophilin family. Immunobiology, 2017, 222, 241-250.	2.4 5.6 2.6	4 4 3 3

#	Article	IF	CITATIONS
163	Increase of serum cyclophilin C levels in the follow-up of coronary artery disease: A biomarker and possible clinical predictor. Archivos De Cardiologia De Mexico, 2021, , .	0.2	2
164	The effect of rottlerin in calcium regulation in HMCâ€1 ⁵⁶⁰ cells is mediated by a PKCâ€Î independent effect. Journal of Cellular Biochemistry, 2008, 105, 255-261.	2.6	1
165	Toxins: Neurotoxins. , 2018, , .		1
166	Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Springer Protocols, 2012, , 219-242.	0.3	1
167	2. Analytical instrumentation and principles. , 2018, , 17-57.		0