
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7933493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perceptual consequences of centre–surround antagonism in visual motion processing. Nature, 2003, 424, 312-315.	27.8	284
2	Strength of early visual adaptation depends on visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4783-4788.	7.1	193
3	Weakened Center-Surround Interactions in Visual Motion Processing in Schizophrenia. Journal of Neuroscience, 2006, 26, 11403-11412.	3.6	162
4	Endogenous attention prolongs dominance durations in binocular rivalry. Journal of Vision, 2005, 5, 6.	0.3	142
5	A Substantial and Unexpected Enhancement of Motion Perception in Autism. Journal of Neuroscience, 2013, 33, 8243-8249.	3.6	133
6	A Strong Interactive Link between Sensory Discriminations and Intelligence. Current Biology, 2013, 23, 1013-1017.	3.9	127
7	Beyond Blindsight: Properties of Visual Relearning in Cortically Blind Fields. Journal of Neuroscience, 2014, 34, 11652-11664.	3.6	101
8	Improved Motion Perception and Impaired Spatial Suppression following Disruption of Cortical Area MT/V5. Journal of Neuroscience, 2011, 31, 1279-1283.	3.6	99
9	Unifying account of visual motion and position perception. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8142-8147.	7.1	94
10	Distinct Neural Mechanisms for Body Form and Body Motion Discriminations. Journal of Neuroscience, 2014, 34, 574-585.	3.6	93
11	Visual Context Processing in Schizophrenia. Clinical Psychological Science, 2013, 1, 5-15.	4.0	90
12	Perceptual and neural consequences of rapid motion adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1080-8.	7.1	84
13	Cognitive and Neural Effects of Visionâ€Based Speedâ€ofâ€Processing Training in Older Adults with Amnestic Mild Cognitive Impairment: A Pilot Study. Journal of the American Geriatrics Society, 2016, 64, 1293-1298.	2.6	80
14	Relearning to See in Cortical Blindness. Neuroscientist, 2016, 22, 199-212.	3.5	73
15	Suppressive mechanisms in visual motion processing: From perception to intelligence. Vision Research, 2015, 115, 58-70.	1.4	68
16	Boosting Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans. Journal of Neuroscience, 2019, 39, 5551-5561.	3.6	68
17	Optimal size for perceiving motion decreases with contrast. Vision Research, 2005, 45, 2059-2064.	1.4	63
18	Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. Journal of Vision, 2009, 9, 30-30.	0.3	58

19	What constitutes an efficient reference frame for vision?. Nature Neuroscience, 2002, 5, 1010-1015.	14.8	54
20	Understanding Attentional Modulation of Binocular Rivalry: A Framework Based on Biased Competition. Frontiers in Human Neuroscience, 2011, 5, 155.	2.0	54
21	Kinesthesis Can Make an Invisible Hand Visible. Psychological Science, 2014, 25, 66-75.	3.3	52
22	High internal noise and poor external noise filtering characterize perception in autism spectrum disorder. Scientific Reports, 2017, 7, 17584.	3.3	47
23	Adaptive center-surround interactions in human vision revealed during binocular rivalry. Vision Research, 2006, 46, 599-604.	1.4	42
24	Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nature Communications, 2019, 10, 2732.	12.8	42
25	Fine Temporal Properties of Center-Surround Interactions in Motion Revealed by Reverse Correlation. Journal of Neuroscience, 2006, 26, 2614-2622.	3.6	38
26	The effects of transcranial magnetic stimulation on visual rivalry. Journal of Vision, 2007, 7, 2.	0.3	36
27	Functional preservation and enhanced capacity for visual restoration in subacute occipital stroke. Brain, 2020, 143, 1857-1872.	7.6	36
28	Sex Differences in Visual Motion Processing. Current Biology, 2018, 28, 2794-2799.e3.	3.9	35
29	Perceptual training yields rapid improvements in visually impaired youth. Scientific Reports, 2016, 6, 37431.	3.3	31
30	Cortical thickness is associated with altered autonomic function in cognitively impaired and nonâ€impaired older adults. Journal of Physiology, 2017, 595, 6969-6978.	2.9	31
31	Visual recovery in cortical blindness is limited by high internal noise. Journal of Vision, 2015, 15, 9.	0.3	30
32	Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search. , 2012, 53, 5860.		29
33	Visual context processing in bipolar disorder: a comparison with schizophrenia. Frontiers in Psychology, 2013, 4, 569.	2.1	28
34	Modularity in the motion system: Independent oculomotor and perceptual processing of brief moving stimuli. Journal of Vision, 2014, 14, 28-28.	0.3	28
35	Motion Perception Getting Better with Age?. Neuron, 2005, 45, 325-327.	8.1	27
36	Does visual attention drive the dynamics of bistable perception?. Attention, Perception, and Psychophysics, 2016, 78, 1861-1873.	1.3	27

#	Article	IF	CITATIONS
37	The efficiency of biological motion perception. Perception & Psychophysics, 2008, 70, 88-95.	2.3	26
38	Larger Receptive Field Size as a Mechanism Underlying Atypical Motion Perception in Autism Spectrum Disorder. Clinical Psychological Science, 2017, 5, 827-842.	4.0	25
39	Low-level mechanisms do not explain paradoxical motion percepts. Journal of Vision, 2010, 10, 1-9.	0.3	23
40	Illusory Movement of Stationary Stimuli in the Visual Periphery: Evidence for a Strong Centrifugal Prior in Motion Processing. Journal of Neuroscience, 2013, 33, 4415-4423.	3.6	23
41	Processing speed and attention training modifies autonomic flexibility: A mechanistic intervention study. Neurolmage, 2020, 213, 116730.	4.2	22
42	A Role of the Parasympathetic Nervous System in Cognitive Training. Current Alzheimer Research, 2017, 14, 784-789.	1.4	22
43	Temporal evolution of motion direction judgments. Journal of Vision, 2015, 15, 4.	0.3	22
44	When can attention influence binocular rivalry?. Attention, Perception, and Psychophysics, 2015, 77, 1908-1918.	1.3	21
45	On the relationship between spatial suppression, speed of information processing, and psychometric intelligence. Intelligence, 2018, 67, 11-18.	3.0	21
46	Contextual modulations of center-surround interactions in motion revealed with the motion aftereffect. Journal of Vision, 2008, 8, 9.	0.3	20
47	Perceptual training profoundly alters binocular rivalry through both sensory and attentional enhancements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12874-12879.	7.1	20
48	Temporal Limits of Visual Motion Processing: Psychophysics and Neurophysiology. Vision (Switzerland), 2019, 3, 5.	1.2	20
49	Linking Neuronal Direction Selectivity to Perceptual Decisions About Visual Motion. Annual Review of Vision Science, 2020, 6, 335-362.	4.4	20
50	The role of sensory ocular dominance on through-focus visual performance in monovision presbyopia corrections. Journal of Vision, 2015, 15, 17.	0.3	19
51	High temporal precision for perceiving event offsets. Vision Research, 2010, 50, 1966-1971.	1.4	15
52	Visual coherence of moving and stationary image changes. Vision Research, 2002, 42, 1523-1534.	1.4	13
53	Increasing stimulus size impairs first- but not second-order motion perception. Journal of Vision, 2011, 11, 22-22.	0.3	13
54	Motion-induced blindness continues outside visual awareness and without attention. Scientific Reports, 2015, 5, 11841.	3.3	13

#	Article	IF	CITATIONS
55	Autonomic flexibility reflects learning and associated neuroplasticity in old age. Human Brain Mapping, 2020, 41, 3608-3619.	3.6	13
56	Initial eye gaze to faces and its functional consequence on face identification abilities in autism spectrum disorder. Journal of Neurodevelopmental Disorders, 2019, 11, 42.	3.1	12
57	Linking Psychophysics and Physiology of Center-Surround Interactions in Visual Motion Processing. , 2005, , 278-314.		12
58	Functional reallocation of sensory processing resources caused by long-term neural adaptation to altered optics. ELife, 2021, 10, .	6.0	8
59	Disentangling locus of perceptual learning in the visual hierarchy of motion processing. Scientific Reports, 2019, 9, 1557.	3.3	7
60	Benefits of Endogenous Spatial Attention During Visual Double-Training in Cortically-Blinded Fields. Frontiers in Neuroscience, 2022, 16, 771623.	2.8	7
61	Is improved contrast sensitivity a natural consequence of visual training?. Journal of Vision, 2015, 15, 4.	0.3	5
62	Targeting autonomic flexibility to enhance cognitive training outcomes in older adults with mild cognitive impairment: study protocol for a randomized controlled trial. Trials, 2021, 22, 560.	1.6	5
63	Recognition Speed Using a Bioptic Telescope. Optometry and Vision Science, 2008, 85, 1135-1141.	1.2	4
64	Optics and neural adaptation jointly limit human stereovision. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
65	Believing is seeing in schizophrenia: The role of top-down processing. Behavioral and Brain Sciences, 2005, 28, 775-775.	0.7	2
66	Motion Perception: Slow Development ofÂCenter-Surround Suppression. Current Biology, 2019, 29, R878-R880.	3.9	2
67	Long-term adaptation to ocular aberrations alters visual processing of spatial frequency information. Journal of Vision, 2016, 16, 554.	0.3	2
68	Audiovisual Delay as a Novel Cue to Visual Distance. PLoS ONE, 2015, 10, e0141125.	2.5	2
69	Use it before you lose it: greater efficacy of visual training for recovering contrast sensitivity in subacute cortical blindness. Journal of Vision, 2019, 19, 33.	0.3	2
70	<title>Effects of surface microstructure on macroscopic image shading</title> .,2001,,.		1
71	Atypical Visual Motion-Prediction Abilities in Autism Spectrum Disorder. Clinical Psychological Science, 2021, 9, 944-960.	4.0	1
72	Perceptual inefficiencies predict individual differences in working memory both in typical adults and in schizophrenia. Journal of Vision, 2017, 17, 1110.	0.3	1

#	Article	IF	CITATIONS
73	Relative efficacy of global motion versus contrast training early after stroke for recovering contrast sensitivity in cortical blindness. Journal of Vision, 2018, 18, 267.	0.3	1
74	Visual object recognition: building invariant representations over time. Journal of Biosciences, 2008, 33, 639-642.	1.1	0
75	Consciousness reflected in the eyes. ELife, 2018, 7, .	6.0	0
76	Atypical and inflexible visual encoding in autism spectrum disorder. PLoS Biology, 2021, 19, e3001293.	5.6	0
77	Estimating decision time in perceptual decision making. Journal of Vision, 2021, 21, 2694.	0.3	0
78	Binocular function is altered by long-term exposure to interocular optical disparities in normally developed visual systems. Journal of Vision, 2017, 17, 61.	0.3	0
79	Transcranial random noise stimulation over early visual cortex improves processing of noisy visual stimuli. Journal of Vision, 2018, 18, 766.	0.3	0
80	Duration threshold: A new approach to estimate decision-making time Journal of Vision, 2020, 20, 1123.	0.3	0
81	Nature-inspired noise model accounts for a broad range of motion phenomena. Journal of Vision, 2020, 20, 1033.	0.3	0
82	Invited Session V: GABAergic function and dysfunction in visual perception: Strong evidence against a common center-surround mechanism in visual processing. Journal of Vision, 2022, 22, 58.	0.3	0