
Andrew C Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of Endocrine-Disrupting Chemicals in Activated Sludge Treatment Works. Environmental Science & Technology, 2001, 35, 4697-4703.	10.0	555
2	The potential for estradiol and ethinylestradiol degradation in english rivers. Environmental Toxicology and Chemistry, 2002, 21, 480-488.	4.3	382
3	Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 2000, 256, 163-173.	8.0	364
4	Lessons from Endocrine Disruption and Their Application to Other Issues Concerning Trace Organics in the Aquatic Environment. Environmental Science & amp; Technology, 2005, 39, 4321-4332.	10.0	362
5	A Model To Estimate Influent and Effluent Concentrations of Estradiol, Estrone, and Ethinylestradiol at Sewage Treatment Works. Environmental Science & Technology, 2004, 38, 3649-3658.	10.0	269
6	Steroid Estrogens Profiles along River Stretches Arising from Sewage Treatment Works Discharges. Environmental Science & Technology, 2003, 37, 1744-1750.	10.0	255
7	Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Research, 2005, 39, 47-58.	11.3	233
8	Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. Journal of Hydrology, 2008, 348, 167-175.	5.4	219
9	Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environment International, 2020, 136, 105454.	10.0	203
10	Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Science of the Total Environment, 2015, 511, 747-755.	8.0	176
11	Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms. Science of the Total Environment, 2006, 367, 616-630.	8.0	167
12	The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. Science of the Total Environment, 2006, 362, 166-178.	8.0	160
13	Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Science of the Total Environment, 2010, 408, 4150-4164.	8.0	150
14	An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of the Total Environment, 2011, 409, 2503-2510.	8.0	150
15	Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution. Environmental Pollution, 2015, 196, 341-349.	7.5	146
16	Learning from the past and considering the future of chemicals in the environment. Science, 2020, 367, 384-387.	12.6	146
17	A national risk assessment for intersex in fish arising from steroid estrogens. Environmental Toxicology and Chemistry, 2009, 28, 220-230.	4.3	142
18	Worldwide estimation of river concentrations of any chemical originating from sewageâ€ŧreatment plants using dilution factors. Environmental Toxicology and Chemistry, 2014, 33, 447-452.	4.3	141

#	Article	IF	CITATIONS
19	Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Science of the Total Environment, 2017, 580, 1247-1256.	8.0	138
20	Do Concentrations of Ethinylestradiol, Estradiol, and Diclofenac in European Rivers Exceed Proposed EU Environmental Quality Standards?. Environmental Science & Technology, 2013, 47, 12297-12304.	10.0	135
21	The British river of the future: How climate change and human activity might affect two contrasting river ecosystems in England. Science of the Total Environment, 2009, 407, 4787-4798.	8.0	134
22	Principles of Sound Ecotoxicology. Environmental Science & Technology, 2014, 48, 3100-3111.	10.0	133
23	The Challenge Presented by Progestins in Ecotoxicological Research: A Critical Review. Environmental Science & Technology, 2015, 49, 2625-2638.	10.0	128
24	The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers. Environmental Toxicology and Chemistry, 2002, 21, 2526-2535.	4.3	126
25	Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environment International, 2019, 127, 671-684.	10.0	126
26	Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China. Environment International, 2016, 91, 69-77.	10.0	118
27	Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environmental Science: Nano, 2014, 1, 533-548.	4.3	110
28	Cytotoxic drugs in drinking water: A prediction and risk assessment exercise for the thames catchment in the United Kingdom. Environmental Toxicology and Chemistry, 2009, 28, 2733-2743.	4.3	107
29	The apparently very variable potency of the anti-depressant fluoxetine. Aquatic Toxicology, 2014, 151, 57-60.	4.0	107
30	Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environment International, 2017, 106, 37-47.	10.0	105
31	10th Anniversary Perspective: Reflections on endocrine disruption in the aquatic environment: from known knowns to unknown unknowns (and many things in between). Journal of Environmental Monitoring, 2008, 10, 1476.	2.1	102
32	An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment. Science of the Total Environment, 2017, 599-600, 1372-1381.	8.0	100
33	Potential Risks Associated with the Proposed Widespread Use of Tamiflu. Environmental Health Perspectives, 2007, 115, 102-106.	6.0	97
34	Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environmental Science & Technology, 2020, 54, 12326-12334.	10.0	97
35	Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: Are phosphorus concentrations beginning to limit phytoplankton biomass?. Science of the Total Environment, 2012, 426, 45-55.	8.0	96
36	Assessing the Concentrations of Polar Organic Microcontaminants from Point Sources in the Aquatic Environment: Measure or Model?. Environmental Science & Technology, 2008, 42, 5390-5399.	10.0	91

#	Article	IF	CITATIONS
37	Modeling Effects of Mixtures of Endocrine Disrupting Chemicals at the River Catchment Scale. Environmental Science & Technology, 2006, 40, 5478-5489.	10.0	88
38	Rapid determination of free and conjugated estrogen in different water matrices by liquid chromatography–tandem mass spectrometry. Chemosphere, 2009, 77, 1440-1446.	8.2	87
39	Exposure assessment of 17αâ€ethinylestradiol in surface waters of the United States and Europe. Environmental Toxicology and Chemistry, 2009, 28, 2725-2732.	4.3	86
40	Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish. Environmental Pollution, 2016, 213, 482-488.	7.5	83
41	Limitations on the role of incorporated organic matter in reducing pesticide leaching. Journal of Contaminant Hydrology, 2001, 49, 241-262.	3.3	77
42	Initial predictions of the concentrations and distribution of 17β-oestradiol, oestrone and ethinyl oestradiol in 3 English rivers. Water Research, 1999, 33, 1663-1671.	11.3	76
43	Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system. Environmental Pollution, 2019, 252, 1532-1538.	7.5	76
44	The presence of EU priority substances mercury, hexachlorobenzene, hexachlorobutadiene and PBDEs in wild fish from four English rivers. Science of the Total Environment, 2013, 461-462, 441-452.	8.0	74
45	Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environmental Toxicology and Chemistry, 2012, 31, 2582-2587.	4.3	72
46	Semi-automated analysis of microplastics in complex wastewater samples. Environmental Pollution, 2021, 268, 115841.	7.5	72
47	Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications. Journal of Contaminant Hydrology, 2001, 53, 101-117.	3.3	70
48	De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water. Journal of Hazardous Materials, 2012, 227-228, 49-54.	12.4	68
49	Potential for aerobic isoproturon biodegradation and sorption in the unsaturated and saturated zones of a chalk aquifer. Journal of Contaminant Hydrology, 1998, 30, 281-297.	3.3	67
50	Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China. Environmental Pollution, 2016, 218, 1234-1244.	7.5	67
51	What difference might sewage treatment performance make to endocrine disruption in rivers?. Environmental Pollution, 2007, 147, 194-202.	7.5	64
52	Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Environmental Pollution, 2014, 194, 17-23.	7.5	63
53	The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China. Science of the Total Environment, 2017, 590-591, 633-642.	8.0	62
54	A Study of Suspended and Colloidal Matter in the Leachate from Lysimeters and its Role in Pesticide Transport. Journal of Environmental Quality, 1999, 28, 595-604.	2.0	61

#	Article	IF	CITATIONS
55	Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure. Environment International, 2016, 94, 667-673.	10.0	59
56	Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes. Journal of Hydrology, 1994, 163, 203-216.	5.4	58
57	Which offers more scope to suppress river phytoplankton blooms: Reducing nutrient pollution or riparian shading?. Science of the Total Environment, 2010, 408, 5065-5077.	8.0	56
58	Transport of Hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China. Science of the Total Environment, 2018, 610-611, 94-100.	8.0	56
59	Ecology of industrial pollution in China. Ecosystem Health and Sustainability, 2020, 6, .	3.1	54
60	DNA, a Possible Site of Action of Aluminum in Rhizobium spp. Applied and Environmental Microbiology, 1990, 56, 3629-3633.	3.1	54
61	Gas–liquid chromatography–tandem mass spectrometry methodology for the quantitation of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents and from wild populations. Journal of Chromatography A, 2010, 1217, 112-118.	3.7	51
62	Natural Variations in Flow Are Critical in Determining Concentrations of Point Source Contaminants in Rivers: An Estrogen Example. Environmental Science & Technology, 2010, 44, 7865-7870.	10.0	51
63	Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants. Chemosphere, 2014, 112, 49-55.	8.2	51
64	Mechanisms of groundwater recharge and pesticide penetration to a chalk aquifer in southern England. Journal of Hydrology, 2003, 275, 122-137.	5.4	50
65	A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals. Environmental Toxicology and Chemistry, 2016, 35, 1021-1027.	4.3	50
66	Assessing the population equivalent and performance of wastewater treatment through the ratios of pharmaceuticals and personal care products present in a river basin: Application to the River Thames basin, UK. Science of the Total Environment, 2017, 575, 1100-1108.	8.0	49
67	Potential for isoproturon, atrazine and mecoprop to be degraded within a chalk aquifer system. Journal of Contaminant Hydrology, 2000, 44, 1-18.	3.3	48
68	Preferential Flow Pathways and Their Capacity to Transport Isoproturon in a Structured Clay Soil. Pest Management Science, 1996, 48, 225-237.	0.4	46
69	Predicting concentrations of the cytostatic drugs cyclophosphamide, carboplatin, 5â€fluorouracil, and capecitabine throughout the sewage effluents and surface waters of europe. Environmental Toxicology and Chemistry, 2013, 32, 1954-1961.	4.3	45
70	Putting pharmaceuticals into the wider context of challenges to fish populations in rivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130581.	4.0	44
71	The different fate of antibiotics in the Thames River, UK, and the Katsura River, Japan. Environmental Science and Pollution Research, 2018, 25, 1903-1913.	5.3	43
72	Comparing predicted against measured steroid estrogen concentrations and the associated risk in two United Kingdom river catchments. Environmental Toxicology and Chemistry, 2012, 31, 892-898.	4.3	42

#	Article	IF	CITATIONS
73	Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters. Environmental Toxicology and Chemistry, 2012, 31, 1407-1415.	4.3	42
74	Determination of cyclophosphamide and ifosfamide in sewage effluent by stable isotope-dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2011, 1218, 8519-8528.	3.7	40
75	Water movement and isoproturon behaviour in a drained heavy clay soil: 2. Persistence and transport. Journal of Hydrology, 1994, 163, 217-231.	5.4	39
76	Regional multi-compartment ecological risk assessment: Establishing cadmium pollution risk in the northern Bohai Rim, China. Environment International, 2016, 94, 283-291.	10.0	38
77	A restatement of the natural science evidence base on the effects of endocrine disrupting chemicals on wildlife. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182416.	2.6	37
78	Are we going about chemical risk assessment for the aquatic environment the wrong way?. Environmental Toxicology and Chemistry, 2016, 35, 1609-1616.	4.3	35
79	Equilibrium adsorption of isoproturon on soil and pure clays. European Journal of Soil Science, 1996, 47, 265-272.	3.9	34
80	The use of modelling to predict levels of estrogens in a river catchment: How does modelled data compare with chemical analysis and in vitro yeast assay results?. Science of the Total Environment, 2010, 408, 4826-4832.	8.0	34
81	Which metal represents the greatest risk to freshwater ecosystem in bohai region of china?. Ecosystem Health and Sustainability, 2017, 3, .	3.1	34
82	Persistent Organic Pollutants in sediment and fish in the River Thames Catchment (UK). Science of the Total Environment, 2017, 576, 78-84.	8.0	33
83	How seasonality affects the flow of estrogens and their conjugates in one of Japan's most populous catchments. Environmental Pollution, 2011, 159, 2906-2912.	7.5	31
84	The long shadow of our chemical past – High DDT concentrations in fish near a former agrochemicals factory in England. Chemosphere, 2016, 162, 333-344.	8.2	31
85	Hazard posed by metals and As in PM2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. Environmental Science and Pollution Research, 2016, 23, 17603-17612.	5.3	29
86	The arrival and discharge of conjugated estrogens from a range of different sewage treatment plants in the UK. Chemosphere, 2011, 82, 1124-1128.	8.2	28
87	Physico-chemical factors alone cannot simulate phytoplankton behaviour in a lowland river. Journal of Hydrology, 2013, 497, 223-233.	5.4	28
88	Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem?. Chemosphere, 2017, 178, 11-18.	8.2	28
89	Multiple pollutants stress the coastal ecosystem with climate and anthropogenic drivers. Journal of Hazardous Materials, 2022, 424, 127570.	12.4	28
90	Spatial variability in herbicide degradation in the subsurface environment of a groundwater protection zone. Pest Management Science, 2002, 58, 3-9.	3.4	27

#	Article	IF	CITATIONS
91	Which commonly monitored chemical contaminant in the Bohai region and the Yangtze and Pearl Rivers of China poses the greatest threat to aquatic wildlife?. Environmental Toxicology and Chemistry, 2018, 37, 1115-1121.	4.3	27
92	PCB and organochlorine pesticide burden in eels in the lower Thames River (UK). Chemosphere, 2015, 118, 103-111.	8.2	25
93	Managing health risks of perfluoroalkyl acids in aquatic food from a river-estuary-sea environment affected by fluorochemical industry. Environment International, 2020, 138, 105621.	10.0	25
94	Endocrine active industrial chemicals: Release and occurrence in the environment. Pure and Applied Chemistry, 2003, 75, 1895-1904.	1.9	24
95	Linking changes in antibiotic effluent concentrations to flow, removal and consumption in four different UK sewage treatment plants over four years. Environmental Pollution, 2017, 220, 919-926.	7.5	24
96	Pesticide fate and behaviour in the UK Chalk aquifer, and implications for groundwater quality. Quarterly Journal of Engineering Geology and Hydrogeology, 2005, 38, 65-81.	1.4	23
97	Predicted no-effect concentration (PNEC) and assessment of risk for the fungicide, triadimefon based on reproductive fitness of aquatic organisms. Chemosphere, 2018, 207, 682-689.	8.2	22
98	Neuroactive drugs and other pharmaceuticals found in blood plasma of wild European fish. Environment International, 2021, 146, 106188.	10.0	22
99	Potential for octylphenol to biodegrade in some english rivers. Environmental Toxicology and Chemistry, 2000, 19, 2486-2492.	4.3	21
100	Search for the evidence of endocrine disruption in the aquatic environment; Lessons to be learned from joint biological and chemical monitoring in the European project COMPREHEND. Pure and Applied Chemistry, 2003, 75, 2445-2450.	1.9	21
101	Estrogen Concentration Affects its Biodegradation Rate in Activated Sludge. Environmental Toxicology and Chemistry, 2009, 28, 2263-2270.	4.3	21
102	The transport and behaviour of isoproturon in unsaturated chalk cores. Journal of Contaminant Hydrology, 2000, 43, 91-110.	3.3	20
103	The ability of indigenous micro-organisms to degrade isoproturon, atrazine and mecoprop within aerobic UK aquifer systems. Pest Management Science, 2003, 59, 1291-1302.	3.4	20
104	Recent localised sulphate reduction and pyrite formation in a fissured Chalk aquifer. Chemical Geology, 1992, 100, 119-127.	3.3	18
105	Patterns of invertebrate functional diversity highlight the vulnerability of ecosystem services over a 45-year period. Current Biology, 2021, 31, 4627-4634.e3.	3.9	18
106	Mutagenic effects of aluminium. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 264, 135-137.	1.1	17
107	Predicting National Exposure to a Point Source Chemical: Japan and Endocrine Disruption as an Example. Environmental Science & Technology, 2011, 45, 1028-1033.	10.0	16
108	Microbial potential of sandy aquifer material in the London basin. Geomicrobiology Journal, 1992, 10, 1-13.	2.0	15

#	Article	IF	CITATIONS
109	Differentiating between physical and chemical constraints on pesticide and water movement into and out of soil aggregates. Pest Management Science, 1999, 55, 524-530.	0.4	15
110	The role of microbial community composition and groundwater chemistry in determining isoproturon degradation potential in UK aquifers. FEMS Microbiology Ecology, 2004, 49, 71-82.	2.7	15
111	Reassessing the Risks of Tamiflu Use during a Pandemic to the Lower Colorado River. Environmental Health Perspectives, 2008, 116, A285-A286.	6.0	15
112	Does exposure to domestic wastewater effluent (including steroid estrogens) harm fish populations in the UK?. Science of the Total Environment, 2017, 589, 89-96.	8.0	15
113	What Works? the Influence of Changing Wastewater Treatment Type, Including Tertiary Granular Activated Charcoal, on Downstream Macroinvertebrate Biodiversity Over Time. Environmental Toxicology and Chemistry, 2019, 38, 1820-1832.	4.3	14
114	Source apportionment and crop bioaccumulation of perfluoroalkyl acids and novel alternatives in an industrial-intensive region with fluorochemical production, China: Health implications for human exposure. Journal of Hazardous Materials, 2022, 423, 127019.	12.4	13
115	Improving the Quality of Wastewater To Tackle Trace Organic Contaminants: Think before You Act!. Environmental Science & Technology, 2015, 49, 3999-4000.	10.0	12
116	Flow Regime Effects on Reactive and Non-reactive Solute Transport. Soil and Sediment Contamination, 2007, 17, 29-40.	1.9	11
117	Exploring the source, migration and environmental risk of perfluoroalkyl acids and novel alternatives in groundwater beneath fluorochemical industries along the Yangtze River, China. Science of the Total Environment, 2022, 827, 154413.	8.0	11
118	The distribution of Polychlorinated Biphenyls (PCBs) in the River Thames Catchment under the scenarios of climate change. Science of the Total Environment, 2015, 533, 187-195.	8.0	10
119	Elevated risk from estrogens in the Yodo River basin (Japan) in winter and ozonation as a management option. Environmental Sciences: Processes and Impacts, 2014, 16, 232.	3.5	9
120	THE POTENTIAL FOR ESTRADIOL AND ETHINYLESTRADIOL DEGRADATION IN ENGLISH RIVERS. Environmental Toxicology and Chemistry, 2002, 21, 480.	4.3	9
121	Sulphateâ€reducing bacteria in deep aquifer sediments of the London Basin: their role in anaerobic mineralization of organic matter. Journal of Applied Bacteriology, 1993, 75, 190-197.	1.1	8
122	Quantification of Pharmaceutical Related Biological Activity in Effluents from Wastewater Treatment Plants in UK and Japan. Environmental Science & Technology, 2018, 52, 11848-11856.	10.0	8
123	The Weightâ€ofâ€Evidence Approach and the Need for Greater International Acceptance of Its Use in Tackling Questions of Chemical Harm to the Environment. Environmental Toxicology and Chemistry, 2021, 40, 2968-2977.	4.3	8
124	Pharmaceuticals in the Aquatic Environment: No Answers Yet to the Major Questions. Environmental Toxicology and Chemistry, 2024, 43, 589-594.	4.3	8
125	Comment on "ldentification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screeningâ€: Environmental Science & Technology, 1999, 33, 369-370.	10.0	7
126	Interaction between pollution and climate change augments ecological risk to a coastal ecosystem. Ecosystem Health and Sustainability, 2018, 4, 161-168.	3.1	7

#	Article	IF	CITATIONS
127	Deionized distilled water as a medium for aluminium toxicity studies of Rhizobium. Letters in Applied Microbiology, 1987, 4, 137-139.	2.2	6
128	Renewing and improving the environmental risk assessment of chemicals. Science of the Total Environment, 2022, 845, 157256.	8.0	6
129	Effects of previous aluminium exposure on motility and nodulation by Rhizobium and Bradyrhizobium. Soil Biology and Biochemistry, 1994, 26, 1477-1482.	8.8	5
130	Influence of Hydraulic Retention Time, Sludge Retention Time, and Ozonation on the Removal of Free and Conjugated Estrogens in Japanese Activated Sludge Treatment Plants. Clean - Soil, Air, Water, 2015, 43, 1289-1294.	1.1	5
131	Is freshwater macroinvertebrate biodiversity being harmed by synthetic chemicals in municipal wastewater?. Current Opinion in Environmental Science and Health, 2019, 11, 8-12.	4.1	5
132	Response To Comment on "Lessons from Endocrine Disruption and Their Application to Other Issues Concerning Trace Organics in the Aquatic Environment― Environmental Science & Technology, 2006, 40, 1086-1087.	10.0	4
133	Risk of endocrine disruption to fish in the Yellow River catchment in China assessed using a spatially explicit model. Environmental Toxicology and Chemistry, 2015, 34, 2870-2877.	4.3	4
134	Predicting risks from downâ€ŧheâ€drain chemicals in a developing country: Mexico and linear alkylbenzene sulfonate as a case study. Environmental Toxicology and Chemistry, 2018, 37, 2475-2486.	4.3	4
135	Do suspended sediments modulate the effects of octylphenol on rainbow trout?. Water Research, 2009, 43, 1381-1391.	11.3	3
136	POTENTIAL FOR OCTYLPHENOL TO BIODEGRADE IN SOME ENGLISH RIVERS. Environmental Toxicology and Chemistry, 2000, 19, 2486.	4.3	3
137	Recent localised sulphate reduction and pyrite formation in a fissured Chalk aquifer — Reply Reduction-oxidation reactions in the London Basin aquifer system — How may they be investigated?. Chemical Geology, 1994, 114, 137-144.	3.3	1
138	The Future of the Weightâ€ofâ€Evidence Approach: A Response to Suter's Comments. Environmental Toxicology and Chemistry, 2021, 40, 2947-2949.	4.3	0