
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7932897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphometric analysis of the lens in human aniridia and mouse Small eye. Experimental Eye Research, 2021, 203, 108371.	2.6	7
2	A simple method for quantitating confocal fluorescent images. Biochemistry and Biophysics Reports, 2021, 25, 100916.	1.3	141
3	The aging mouse lens transcriptome. Experimental Eye Research, 2021, 209, 108663.	2.6	11
4	The effect of sex on the mouse lens transcriptome. Experimental Eye Research, 2021, 209, 108676.	2.6	7
5	$\hat{I}\pm V\hat{I}^2 8$ integrin targeting to prevent posterior capsular opacification. JCI Insight, 2021, 6, .	5.0	9
6	Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biology, 2020, 90, 79-108.	3.6	32
7	Cataract surgeon viewpoints on the need for novel preventative anti-inflammatory and anti-posterior capsular opacification therapies. Current Medical Research and Opinion, 2019, 35, 1971-1981.	1.9	16
8	A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus. Scientific Reports, 2019, 9, 11191.	3.3	14
9	Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. , 2018, 59, 4986.		68
10	Spatiotemporal dynamics of canonical Wnt signaling during embryonic eye development and posterior capsular opacification (PCO). Experimental Eye Research, 2018, 175, 148-158.	2.6	18
11	The molecular mechanisms underlying lens fiber elongation. Experimental Eye Research, 2017, 156, 41-49.	2.6	29
12	\hat{I}^2 1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. , 2017, 58, 3896.		19
13	β1â€integrin controls cell fate specification in early lens development. Differentiation, 2016, 92, 133-147.	1.9	15
14	Unfoldedâ€protein responseâ€associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB Journal, 2016, 30, 1087-1095.	0.5	28
15	Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development (Cambridge), 2015, 143, 318-28.	2.5	59
16	Lens Extrusion from <i>Laminin Alpha 1</i> Mutant Zebrafish. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	12
17	The roles of α _V integrins in lens <scp>EMT</scp> and posterior capsular opacification. Journal of Cellular and Molecular Medicine, 2014, 18, 656-670.	3.6	71
18	The Zeb Proteins Î'EF1 and Sip1 May Have Distinct Functions in Lens Cells Following Cataract Surgery. , 2014, 55, 5445.		10

#	Article	IF	CITATIONS
19	Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis. Genomics Data, 2014, 2, 369-374.	1.3	20
20	Beta-1 integrin is important for the structural maintenance and homeostasis of differentiating fiber cells. International Journal of Biochemistry and Cell Biology, 2014, 50, 132-145.	2.8	17
21	Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mechanisms of Development, 2014, 131, 86-110.	1.7	45
22	Growth Factor Signaling in Lens Fiber Differentiation. , 2014, , 81-104.		4
23	Junctional Adhesion Molecule-A Regulates Vascular Endothelial Growth Factor Receptor-2 Signaling-Dependent Mouse Corneal Wound Healing. PLoS ONE, 2013, 8, e63674.	2.5	13
24	The unfolded protein response is activated in connexin 50 mutant mouse lenses. Experimental Eye Research, 2012, 102, 28-37.	2.6	29
25	Focus on Molecules: Smad Interacting Protein 1 (Sip1, ZEB2, ZFHX1B). Experimental Eye Research, 2012, 101, 105-106.	2.6	12
26	aV integrins and TGFâ€Î²â€induced EMT: a circle of regulation. Journal of Cellular and Molecular Medicine, 2012, 16, 445-455.	3.6	127
27	Unfolded Protein Response (UPR) is activated during normal lens development. Gene Expression Patterns, 2011, 11, 135-143.	0.8	32
28	Expression of βA3/A1-crystallin in the developing and adult rat eye. Journal of Molecular Histology, 2011, 42, 59-69.	2.2	26
29	A New Focus on RNA in the Lens. Science, 2011, 331, 1523-1524.	12.6	2
30	Characterizing molecular diffusion in the lens capsule. Matrix Biology, 2010, 29, 228-236.	3.6	35
31	CD44 expression is developmentally regulated in the mouse lens and increases in the lens epithelium after injury. Differentiation, 2010, 79, 111-119.	1.9	26
32	Abnormal Expression of Collagen IV in Lens Activates Unfolded Protein Response Resulting in Cataract. Journal of Biological Chemistry, 2009, 284, 35872-35884.	3.4	80
33	The lens capsule. Experimental Eye Research, 2009, 88, 151-164.	2.6	206
34	Contributions of Mouse Genetic Background and Age on Anterior Lens Capsule Thickness. Anatomical Record, 2008, 291, 1619-1627.	1.4	28
35	Differential expression of the HMGN family of chromatin proteins during ocular development. Gene Expression Patterns, 2008, 8, 433-437.	0.8	35
36	Attenuation of Junctional Adhesion Molecule-A Is a Contributing Factor for Breast Cancer Cell Invasion. Cancer Research, 2008, 68, 2194-2203.	0.9	123

#	Article	IF	CITATIONS
37	<i>Bin3</i> Deletion Causes Cataracts and Increased Susceptibility to Lymphoma during Aging. Cancer Research, 2008, 68, 1683-1690.	0.9	27
38	Dual Roles for Prox1 in the Regulation of the Chicken Î ² B1-Crystallin Promoter. , 2008, 49, 1542.		18
39	PCNA interacts with Prox1 and represses its transcriptional activity. Molecular Vision, 2008, 14, 2076-86.	1.1	10
40	Conditional deletion of \hat{l}^21 -integrin from the developing lens leads to loss of the lens epithelial phenotype. Developmental Biology, 2007, 306, 658-668.	2.0	65
41	Deletion of JAM-A causes morphological defects in the corneal epithelium. International Journal of Biochemistry and Cell Biology, 2007, 39, 576-585.	2.8	21
42	Genetic and epigenetic mechanisms of gene regulation during lens development. Progress in Retinal and Eye Research, 2007, 26, 555-597.	15.5	143
43	Subfertility in mice harboring a mutation in betaB2-crystallin. Molecular Vision, 2007, 13, 366-73.	1.1	22
44	Production of Monoclonal Antibodies Against Prox1. Hybridoma, 2006, 25, 27-33.	0.4	3
45	Inbred FVB/N Mice Are Mutant at thecp49/Bfsp2Locus and Lack Beaded Filament Proteins in the Lens. , 2006, 47, 4931.		53
46	Regulation of αA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO Journal, 2006, 25, 2107-2118.	7.8	93
47	Xcat, a novel mouse model for Nance–Horan syndrome inhibits expression of the cytoplasmic-targeted Nhs1 isoform. Human Molecular Genetics, 2006, 15, 319-327.	2.9	24
48	JAM-A expression during embryonic development. Developmental Dynamics, 2005, 233, 1517-1524.	1.8	16
49	Palm is expressed in both developing and adult mouse lens and retina. BMC Ophthalmology, 2005, 5, 14.	1.4	9
50	Expression of tissue plasminogen activator during eye development. Experimental Eye Research, 2005, 81, 90-96.	2.6	9
51	Proteomic and Sequence Analysis of Chicken Lens Crystallins Reveals Alternate Splicing and Translational Forms of βB2 and βA2 Crystallins. , 2004, 45, 2705.		28
52	Ectopic Pax6 Expression Disturbs Lens Fiber Cell Differentiation. , 2004, 45, 3589.		45
53	Lens Crystallins. , 2004, , 119-150.		10
54	Chromosomal Proteins HMGN3a and HMGN3b Regulate the Expression of Glycine Transporter 1. Molecular and Cellular Biology, 2004, 24, 3747-3756.	2.3	47

#	Article	IF	CITATIONS
55	Mafs, Prox1, and Pax6 Can Regulate Chicken βB1-Crystallin Gene Expression. Journal of Biological Chemistry, 2004, 279, 11088-11095.	3.4	89
56	OptiRNAi, an RNAi design tool. Computer Methods and Programs in Biomedicine, 2004, 75, 67-73.	4.7	28
57	Developmental Expression of Pop1/Bves. Journal of Histochemistry and Cytochemistry, 2004, 52, 371-377.	2.5	43
58	Protein expression patterns for ubiquitous and tissue specific calpains in the developing mouse lens. Experimental Eye Research, 2003, 76, 433-443.	2.6	26
59	Differential influence of proteolysis by calpain 2 and Lp82 on in vitro precipitation of mouse lens crystallins. Biochemical and Biophysical Research Communications, 2003, 307, 558-563.	2.1	17
60	Requirement for Pax6 in corneal morphogenesis: a role in adhesion. Journal of Cell Science, 2003, 116, 2157-2167.	2.0	141
61	Identification of Genes Downstream of Pax6 in the Mouse Lens Using cDNA Microarrays. Journal of Biological Chemistry, 2002, 277, 11539-11548.	3.4	77
62	Prox1 is differentially localized during lens development. Mechanisms of Development, 2002, 112, 195-198.	1.7	95
63	Collagen IV in the developing lens capsule. Matrix Biology, 2002, 21, 415-423.	3.6	73
64	A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens. Genes To Cells, 2002, 7, 1267-1283.	1.2	61
65	General utility of the chicken betaB1-crystallin promoter to drive protein expression in lens fiber cells of transgenic mice. Transgenic Research, 2002, 11, 397-410.	2.4	25
66	Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Investigative Ophthalmology and Visual Science, 2002, 43, 205-15.	3.3	130
67	The mouse βB1-crystallin promoter: strict regulation of lens fiber cell specificity. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 30-38.	2.4	30
68	An immunohistochemical method for the detection of proteins in the vertebrate lens. Journal of Immunological Methods, 2001, 253, 243-252.	1.4	54
69	Characterization and Expression of Calpain 10. Journal of Biological Chemistry, 2001, 276, 28525-28531.	3.4	97
70	Production of Monoclonal Antibodies Against Chicken Pop1 (BVES). Hybridoma, 2001, 20, 377-381.	0.4	20
71	Truncated forms of Pax-6 disrupt lens morphology in transgenic mice. Investigative Ophthalmology and Visual Science, 2000, 41, 464-73.	3.3	51
72	Dual Roles for Pax-6: a Transcriptional Repressor of Lens Fiber Cell-Specific β-Crystallin Genes. Molecular and Cellular Biology, 1998, 18, 5579-5586.	2.3	132

#	Article	IF	CITATIONS
73	Letter to the Editor: The Transcription Factor, Kid-1, is Highly Expressed in Both Eye and Kidney of the Mouse. Experimental Eye Research, 1997, 64, 287-290.	2.6	7
74	Eyes absent: A gene family found in several metazoan phyla. Mammalian Genome, 1997, 8, 479-485.	2.2	63
75	Expression of the helix-loop-helix genes Id-1 and NSCL-1 during cerebellar development. , 1997, 208, 107-114.		31
76	Developmental regulation of the chicken βB1-crystallin promoter in transgenic mice. Mechanisms of Development, 1996, 57, 79-89.	1.7	55
77	Sequence and Expression of Chicken βA2- and βB3-crystallins. Experimental Eye Research, 1996, 62, 111-120.	2.6	25
78	Structure and Chromosomal Localization of the Human Homeobox Gene Prox 1. Genomics, 1996, 35, 517-522.	2.9	81
79	Chicken homeobox gene prox 1 related toDrosophila prospero is expressed in the developing lens and retina. Developmental Dynamics, 1996, 206, 354-367.	1.8	121
80	Spatial and temporal activity of the αB-crystallin/small heat shock protein gene promoter in transgenic mice. Developmental Dynamics, 1996, 207, 75-88.	1.8	67
81	Chicken β B1 crystallin: gene sequence and evidence for functional conservation of promoter activity between chicken and mouse. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 68-76.	2.4	35
82	The chicken βA4- and βB1-crystallin-encoding genes are tightly linked. Gene, 1995, 162, 189-196.	2.2	32
83	Expression of the helix-loop-helix protein, Id, during branching morphogenesis in the kidney. Kidney International, 1994, 46, 324-332.	5.2	13
84	Convergent evolution of crystallin gene regulation in squid and chicken: The AP-1/ARE connection. Journal of Molecular Evolution, 1994, 39, 134-143.	1.8	42
85	Germ Cell Deficient (gcd) Mouse as a Model of Premature Ovarian Failure1. Biology of Reproduction, 1993, 49, 221-227.	2.7	28
86	The gene for the helix-loop-helix protein, ld, is specifically expressed in neural precursors. Developmental Biology, 1992, 154, 1-10.	2.0	117
87	Lipids in fed and starved Biomphalaria glabrata (gastropoda). Comparative Biochemistry and Physiology A, Comparative Physiology, 1987, 86, 663-665.	0.6	22
88	Lipids and sterols in Corbicula fluminea (bivalvia). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 87, 881-883.	0.2	2
89	Determination of Sulfanilamide and Sulfisoxazole in Drug Preparations by Quantitative High Performance TLC. Journal of Liquid Chromatography and Related Technologies, 1986, 9, 1861-1868.	1.0	2