Zhenhai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/793114/publications.pdf

Version: 2024-02-01

35 papers 1,803 citations

361413 20 h-index 35 g-index

36 all docs 36 docs citations

36 times ranked

2477 citing authors

#	Article	IF	CITATIONS
1	Thermoelectric properties of <i>ı̂+</i> -In2Se3 monolayer. Applied Physics Letters, 2021, 118, .	3.3	36
2	Prediction of Novel van der Waals Boron Oxides with Superior Deepâ€Ultraviolet Nonlinear Optical Performance. Angewandte Chemie, 2021, 133, 10886-10892.	2.0	6
3	Spin-Gapless States in Two-Dimensional Molecular Ferromagnet Fe ₂ (TCNQ) ₂ . Journal of Physical Chemistry Letters, 2021, 12, 7921-7927.	4.6	4
4	Design of GaN-Based PCSEL With Temperature-Insensitive Lasing Wavelength. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	3
5	Imaging Domain Reversal in an Ultrathin Van der Waals Ferromagnet. Advanced Materials, 2020, 32, e2003314.	21.0	47
6	Discovery of new boron-rich chalcogenides: orthorhombic B6X (X=S, Se). Scientific Reports, 2020, 10, 9277.	3.3	15
7	Design of broadband reflector at the visible wavelengths using particle swarm optimization. AIP Advances, 2019, 9, .	1.3	10
8	Ternary inorganic electrides with mixed bonding. Physical Review B, 2019, 99, .	3.2	26
9	New two-dimensional phase of tin chalcogenides: Candidates for high-performance thermoelectric materials. Physical Review Materials, 2019, 3, .	2.4	44
10	Hyperbolic dispersion and negative refraction in a metal-organic framework Cu-BHT. Physical Review Materials, 2019, 3, .	2.4	9
11	Two-dimensional boron on Pb (1 1 0) surface. FlatChem, 2018, 7, 34-41.	5.6	7
12	Band inversion and topological aspects in a TiNI monolayer. Physical Chemistry Chemical Physics, 2016, 18, 22154-22159.	2.8	26
13	Positive focal shift of gallium nitride high contrast grating focusing reflectors. Materials Research Express, 2016, 3, 095901.	1.6	3
14	Two-dimensional magnetic boron. Physical Review B, 2016, 93, .	3.2	101
15	Superconductivity of novel tin hydrides (SnnHm) under pressure. Scientific Reports, 2016, 6, 22873.	3.3	39
16	Visible light metasurfaces based on gallium nitride high contrast gratings. Optics Communications, 2016, 367, 144-148.	2.1	17
17	Study of focal shift effect in planar GaN high contrast grating lenses. Optics Express, 2015, 23, 29360.	3.4	18
18	Membrane guided-mode resonant color filters exhibiting adjustable spectral response. Optics Communications, 2015, 342, 129-135.	2.1	11

#	Article	IF	CITATIONS
19	Phagraphene: A Low-Energy Graphene Allotrope Composed of 5–6–7 Carbon Rings with Distorted Dirac Cones. Nano Letters, 2015, 15, 6182-6186.	9.1	482
20	Characteristics of GaN-based LED fabricated on a GaN-on-silicon platform. Applied Physics Express, 2014, 7, 082102.	2.4	22
21	Can cation vacancy defects induce room temperature ferromagnetism in GaN?. Applied Physics Letters, 2013, 102, 062411.	3.3	28
22	Spin-polarization of VGaON center in GaN and its application in spin qubit. Applied Physics Letters, 2012, 100, 192401.	3.3	25
23	Isoelectronic Doping of Graphdiyne with Boron and Nitrogen: Stable Configurations and Band Gap Modification. Journal of Physical Chemistry A, 2012, 116, 3934-3939.	2.5	142
24	Hybrid density functional study of band alignment in ZnO–GaN and ZnO–(Ga1ⰒxZnx)(N1ⰒxOx)–GaN heterostructures. Physical Chemistry Chemical Physics, 2012, 14, 15693.	2.8	46
25	Honeycomb-Patterned Quantum Dots beyond Graphene. Journal of Physical Chemistry C, 2011, 115, 17743-17749.	3.1	25
26	Tunable electronic structures of graphene/boron nitride heterobilayers. Applied Physics Letters, 2011, 98, .	3 . 3	211
27	High Mobility and High Storage Capacity of Lithium in sp–sp ² Hybridized Carbon Network: The Case of Graphyne. Journal of Physical Chemistry C, 2011, 115, 8845-8850.	3.1	228
28	Structural and electronic properties of ZnS/ZnO heteronanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1522-1527.	2.7	7
29	Theoretical insights into the built-in electric field and band offsets of BN/C heterostructured zigzag nanotubes. Journal Physics D: Applied Physics, 2011, 44, 095405.	2.8	19
30	Manifold electronic structure transition of BNC biribbons. Journal of Applied Physics, 2011, 110, .	2.5	30
31	Neutral vacancy-defect-induced magnetism in SiC monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2451-2454.	2.7	26
32	Natural charge spatial separation and quantum confinement of ZnO/GaN-core/shell nanowires. Journal of Applied Physics, 2010, 108, 123707.	2.5	12
33	Electronic properties of BN/C nanotube heterostructures. Journal of Applied Physics, 2010, 107, .	2.5	34
34	Orientation-Dependent Stability and Quantum-Confinement Effects of Silicon Carbide Nanowires. Journal of Physical Chemistry C, 2009, 113, 12731-12735.	3.1	27
35	First-Principles Study of Faceted Single-Crystalline Silicon Carbide Nanowires and Nanotubes. Journal of Physical Chemistry C, 2009, 113, 856-861.	3.1	17