Jack R Norton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7929812/publications.pdf

Version: 2024-02-01

147801 155660 3,265 76 31 55 h-index citations g-index papers 81 81 81 2741 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isomerization of Aziridines to Allyl Amines via Titanium and Chromium Cooperative Catalysis. Journal of Organic Chemistry, 2022, 87, 4991-4997.	3.2	3
2	The synthesis of diverse terpene architectures from phenols. , 2022, 1, 313-321.		7
3	Highly Selective Hydrogenation of Câ \cdot C Bonds Catalyzed by a Rhodium Hydride. Journal of the American Chemical Society, 2021, 143, 9657-9663.	13.7	31
4	Generation of αâ€Boryl Radicals by H [.] Transfer and their Use in Cycloisomerizations. Angewandte Chemie - International Edition, 2021, 60, 22678-22682.	13.8	7
5	Generation of αâ€Boryl Radicals by H [.] Transfer and their Use in Cycloisomerizations. Angewandte Chemie, 2021, 133, 22860-22864.	2.0	1
6	Hydrogen atom transfer rates from Tp-containing metal-hydrides to trityl radicals. Canadian Journal of Chemistry, 2021, 99, 216-220.	1.1	5
7	Catalytic Cycloisomerization onto a Carbonyl Oxygen. Organic Letters, 2020, 22, 6171-6176.	4.6	13
8	Synthesis, Characterization, and Catalytic Activity of Bimetallic Ti/Cr Complexes. Organometallics, 2020, 39, 4592-4598.	2.3	2
9	Catalyzing the Hydrodefluorination of CF ₃ -Substituted Alkenes by PhSiH ₃ . H• Transfer from a Nickel Hydride. Journal of the American Chemical Society, 2020, 142, 4793-4799.	13.7	100
10	\hat{HA} · Transfer-Initiated Synthesis of \hat{I}^3 -Lactams: Interpretation of Cycloisomerization and Hydrogenation Ratios. ACS Catalysis, 2019, 9, 10294-10298.	11.2	21
11	Thermodynamics of H ⁺ /H [•] /H [–] /e [–] Transfer from [CpV(CO) ₃ H] ^{â^³} : Comparisons to the Isoelectronic CpCr(CO) ₃ H. Organometallics, 2019, 38, 4319-4328.	2.3	10
12	TEMPO-Mediated Catalysis of the Sterically Hindered Hydrogen Atom Transfer Reaction between (C ₅ Ph ₅)Cr(CO) ₃ H and a Trityl Radical. Journal of the American Chemical Society, 2019, 141, 1882-1886.	13.7	25
13	Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science, 2019, 364, 764-767.	12.6	130
14	Catalysis of Radical Cyclizations from Alkyl Iodides under H ₂ : Evidence for Electron Transfer from [CpV(CO) ₃ H] ^{â^'} . Journal of the American Chemical Society, 2018, 140, 4512-4516.	13.7	29
15	Insertion of Isonitriles into the Zr–CH ₃ Bond of Cp* ₂ Zr(CH ₃) ₂ and Electrophilic Cleavage of the Remaining Methyl Group. Organometallics, 2018, 37, 4424-4430.	2.3	7
16	Insertion of Isonitriles into the M–C Bonds of Group 4 Dialkyl Complexes. Journal of the American Chemical Society, 2018, 140, 8980-8989.	13.7	8
17	Cationic Copper Hydride Clusters Arising from Oxidation of (Ph ₃ P) ₆ Cu ₆ H ₆ . Journal of the American Chemical Society, 2017, 139, 7685-7688.	13.7	11
18	Radical Isomerization and Cycloisomerization Initiated by H• Transfer. Journal of the American Chemical Society, 2016, 138, 7698-7704.	13.7	103

#	Article	IF	CITATIONS
19	Reaction of Cp* ₂ Zr(2,3-dimethylbutadiene) with Isonitriles and CO. Organometallics, 2016, 35, 3163-3169.	2.3	14
20	Transition-Metal Hydride Radical Cations. Chemical Reviews, 2016, 116, 8427-8462.	47.7	64
21	Synthesis and Resolution of Chiral Ruthenium Complexes Containing the 1-Me-3-PhCp Ligand. Organometallics, 2016, 35, 39-46.	2.3	5
22	Direct Generation of Oxygen-Stabilized Radicals by H• Transfer from Transition Metal Hydrides. Journal of the American Chemical Society, 2015, 137, 1036-1039.	13.7	59
23	Reaction of $Cp^*(Cl)M(Diene)$ (M = Ti, Hf) with Isonitriles. Journal of the American Chemical Society, 2015, 137, 10152-10155.	13.7	24
24	The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics. Journal of the American Chemical Society, 2014, 136, 17362-17365.	13.7	107
25	Kinetics and Mechanism of the Hydrogenation of the CpCr(CO) ₃ 2 Equilibrium to CpCr(CO) ₃ 4/sub>H. Organometallics, 2014, 33, 2496-2502.	2.3	25
26	Dihydrogen Activation by Cobaloximes with Various Axial Ligands. Inorganic Chemistry, 2014, 53, 10743-10747.	4.0	19
27	Kinetics and Thermodynamics of H ^{â€"} /H•/H ⁺ Transfer from a Rhodium(III) Hydride. Journal of the American Chemical Society, 2014, 136, 5938-5948.	13.7	68
28	Effect of Double-Bond Substituents on the Rate of Cyclization of α-Carbomethoxyhex-5-enyl Radicals. Journal of Organic Chemistry, 2014, 79, 1938-1946.	3.2	8
29	Electron Transfer from Hexameric Copper Hydrides. Journal of the American Chemical Society, 2013, 135, 17262-17265.	13.7	55
30	Synthesis, Structural Characterization, and Reactivity of Cp ₂ - and (CpMe) ₂ -Ligated Titanaaziridines and Titanaoxiranes with Fast Enantiomer Interconversion Rates. Organometallics, 2012, 31, 8218-8224.	2.3	33
31	Mechanisms by which Alkynes React with CpCr(CO) ₃ H. Application to Radical Cyclization. Journal of the American Chemical Society, 2012, 134, 15512-15518.	13.7	39
32	Evidence for Formation of a Co–H Bond from (H ₂) ₂ under H ₂ : Application to Radical Cyclizations. Journal of the American Chemical Society, 2012, 134, 14662-14665.	13.7	107
33	On the reaction of carboxylic acids and isonitriles with conventional heating. Tetrahedron, 2012, 68, 10236-10240.	1.9	7
34	Synthesis, Electrochemistry, and Reactivity of New Iridium(III) and Rhodium(III) Hydrides. Organometallics, 2012, 31, 5058-5064.	2.3	58
35	Zirconium-Catalyzed Carboalumination of \hat{l}_{\pm} -Olefins and Chain Growth of Aluminum Alkyls: Kinetics and Mechanism. Journal of the American Chemical Society, 2011, 133, 5263-5273.	13.7	72
36	Facile reaction of carboxylic acids with isonitriles in toluene. Tetrahedron Letters, 2011, 52, 2933-2934.	1.4	8

#	Article	IF	Citations
37	Mechanism of the Reaction of Alkynes with a "Constrained Geometry―Zirconaaziridine. PMe3 Dissociates More Rapidly from the Constrained Geometry Complex than from its Cp2 Analogue. Organometallics, 2009, 28, 493-498.	2.3	20
38	Synthesis, Electrochemistry, and Reactivity of Half-Sandwich Ruthenium Complexes Bearing Metallocene-Based Bisphosphines. Organometallics, 2009, 28, 3804-3814.	2.3	34
39	Synthesis and properties of carboxy-substituted half-sandwich ruthenium complexes with chelating bisphosphine ligands (η5-C5H4CO2H)Ru(η2-L)X (X=I, H). Journal of Organometallic Chemistry, 2008, 693, 1382-1388.	1.8	12
40	Initiating radical cyclizations by H transfer from transition metals. Tetrahedron, 2008, 64, 11822-11830.	1.9	57
41	Chain-transfer catalysis by vanadium complexes during methyl methacrylate polymerization. Inorganica Chimica Acta, 2008, 361, 3089-3093.	2.4	9
42	Using a Two-Step Hydride Transfer To Achieve 1,4-Reduction in the Catalytic Hydrogenation of an Acyl Pyridinium Cation. Journal of Organic Chemistry, 2008, 73, 9668-9674.	3.2	34
43	Unusually Weak Metalâ^'Hydrogen Bonds in HV(CO) ₄ (Pâ^'P) and Their Effectiveness as H [•] Donors. Journal of the American Chemical Society, 2008, 130, 4250-4252.	13.7	66
44	Electron Exchange Involving a Sulfur-Stabilized Ruthenium Radical Cation. Inorganic Chemistry, 2007, 46, 5805-5812.	4.0	23
45	Kinetics of Hydrogen Atom Transfer from (η5-C5H5)Cr(CO)3H to Various Olefins:  Influence of Olefin Structure. Journal of the American Chemical Society, 2007, 129, 234-240.	13.7	92
46	Tin-Free and Catalytic Radical Cyclizations. Journal of the American Chemical Society, 2007, 129, 770-771.	13.7	95
47	Enantioselective methylalumination of \hat{l} ±-olefins. Journal of Organometallic Chemistry, 2007, 692, 4768-4773.	1.8	15
48	Measurement of the Rate Constant for H•Abstraction from Methylisobutyryl Radical by (C5Ph5)Cr(CO)3•. Macromolecules, 2006, 39, 8236-8240.	4.8	6
49	Factors Affecting the Apparent Chain Transfer Rate Constants of Chromium Metalloradicals: Mechanistic Implications. Macromolecules, 2006, 39, 8229-8235.	4.8	13
50	Ruthenium-Catalyzed Ionic Hydrogenation of Aziridinium Cations. Organometallics, 2005, 24, 6358-6364.	2.3	25
51	A vibrational study of the diosmacyclobutene complex Os2(CO)8(Î⅓2–η1,η1–C2H2): The use of organometallic complexes as vibrational models for chemisorbed ethyne. Physical Chemistry Chemical Physics, 2004, 6, 1070-1076.	2.8	6
52	Effect of Steric Congestion on the Activity of Chromium and Molybdenum Metalloradicals as Chain Transfer Catalysts during MMA Polymerization. Macromolecules, 2004, 37, 241-243.	4.8	17
53	Effectiveness in Catalyzing Carboalumination Can Be Inferred from the Rate of Dissociation of M/Al Dimers. Organometallics, 2004, 23, 5105-5107.	2.3	49
54	Kinetics and Thermodynamics of Hâ \in ¢ Transfer from (\hat{i} -5-C5R5)Cr(CO)3H (R = Ph, Me, H) to Methyl Methacrylate and Styrene. Journal of the American Chemical Society, 2003, 125, 10093-10102.	13.7	57

#	Article	IF	Citations
55	Effect of Chelate Ring Size on the Rate of Hydride Transfer from CpRu(Pâ^'P)H (Pâ^'P = Chelating) Tj ETQq1 1 0.78	4314 rgBT 2.3	 Agverlock
56	Stoichiometric, Catalytic, and Enantioface-Selective Hydrogenation of CN Bonds by an Ionic Mechanism. Journal of the American Chemical Society, 2001, 123, 1778-1779.	13.7	132
57	Generation and Characterization of the Tris(pentafluorophenyl)borane Radical Anion. Organometallics, 2001, 20, 3818-3820.	2.3	77
58	Rhenium Oxo Complexes of a Chelating Diyne Ligand. Synthesis and Study of the Kinetics of Protonation. Inorganic Chemistry, 2001, 40, 2942-2952.	4.0	20
59	Mechanism of Insertion of Carbodiimides into the Zrâ^'C Bonds of Zirconaaziridines. Formation of α-Amino Amidines. Organometallics, 2001, 20, 254-260.	2.3	32
60	Aqua, Alcohol, and Acetonitrile Adducts of Tris(perfluorophenyl)borane: Evaluation of Brønsted Acidity and Ligand Lability with Experimental and Computational Methods. Journal of the American Chemical Society, 2000, 122, 10581-10590.	13.7	235
61	Trapping of Acetylene by a Zirconocene Terminal Imido Complex. Organometallics, 2000, 19, 2365-2372.	2.3	24
62	Catalysis by C5Ph5Cr(CO)3•of Chain Transfer during the Free Radical Polymerization of Methyl Methacrylate. Macromolecules, 2000, 33, 2790-2792.	4.8	24
63	Reaction of the Lewis Acids B(C6F5)3and (AlMe2Cl)2with Azazirconacycles. Organometallics, 1999, 18, 3827-3834.	2.3	14
64	[Os2(CO)8(\hat{i} /42- \hat{i} -1, \hat{i} -1-propene)] and Related Complexes as Vibrational Models for Alkenes Chemisorbed on Single-Crystal Metal Surfaces. Journal of the American Chemical Society, 1999, 121, 529-534.	13.7	22
65	Ethylene Ligand Structures of Os(CO)4(C2H4) and Os2(CO)8(C2H4) Determined by1H NMR in Liquid Crystal Solvents. Inorganic Chemistry, 1998, 37, 1720-1728.	4.0	7
66	Kinetics of Diosmacyclobutane Exchange Reactions. Journal of the American Chemical Society, 1997, 119, 5618-5627.	13.7	8
67	Kinetics and Mechanism of Alkyl Transfer from Organocobalt(III) to Nickel(I):  Implications for the Synthesis of Acetyl Coenzyme A by CO Dehydrogenase. Journal of the American Chemical Society, 1997, 119, 1648-1655.	13.7	91
68	Evidence for a Ring-Opening Preequilibrium in the Exchange Reactions of Diosmacyclobutanes. Journal of the American Chemical Society, 1997, 119, 5628-5637.	13.7	17
69	Hydride Transfer by Hydrido Transition-Metal Complexes. Ionic Hydrogenation of Aldehydes and Ketones, and Structural Characterization of an Alcohol Complex. Angewandte Chemie International Edition in English, 1992, 31, 1233-1235.	4.4	65
70	Approach to equilibrium after dilution of a monomer/dimer mixture. Measurement of the rate constant for dissociation of trityl dimer by stopped-flow methods. International Journal of Chemical Kinetics, 1992, 24, 895-902.	1.6	3
71	Relative rates of hydrogen atom (H.cntdot.) transfer from transition-metal hydrides to trityl radicals. Journal of the American Chemical Society, 1991, 113, 4888-4895.	13.7	82
72	Hydrogenâ€Atom Transfer Reactions of Transitionâ€Metal Hydrides. Israel Journal of Chemistry, 1991, 31, 55-66.	2.3	125

ARTICLE IF CITATIONS

Synthesis and solution properties of the heterobimetallic complexes Cp2ZrMe(.mu.-OC)M(CO)2Cp (M =) Tj ETQq1 1 0.784314 rgBT /