Roberta Zini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/792958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations and prognosis in primary myelofibrosis. Leukemia, 2013, 27, 1861-1869.	7.2	653
2	Molecular Profiling of CD34+Cells in Idiopathic Myelofibrosis Identifies a Set of Disease-Associated Genes and Reveals the Clinical Significance of Wilms' Tumor Gene 1 (WT1). Stem Cells, 2007, 25, 165-173.	3.2	111
3	miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood, 2014, 124, e21-e32.	1.4	105
4	c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood, 2010, 116, e99-e110.	1.4	95
5	Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages. Stem Cells and Development, 2013, 22, 1097-1111.	2.1	95
6	The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109, 533-542.	1.4	93
7	Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Experimental Hematology, 2011, 39, 360-374.e5.	0.4	73
8	MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Experimental Hematology, 2007, 35, 1708.e1-1708.e12.	0.4	71
9	Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells. Cell Death and Differentiation, 2006, 13, 1686-1696.	11.2	67
10	Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34â^ cell population with intrinsic resistance to imatinib. Blood, 2009, 114, 5191-5200.	1.4	62
11	MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF. Cell Death and Differentiation, 2015, 22, 1906-1921.	11.2	60
12	Genomic landscape of megakaryopoiesis and platelet function defects. Blood, 2016, 127, 1249-1259.	1.4	53
13	Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood, 2012, 119, 217-226.	1.4	52
14	Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells. Oncotarget, 2017, 8, 49451-49469.	1.8	49
15	The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self-Renewal, Commitment, and Engraftment. Stem Cells, 2005, 23, 496-506.	3.2	45
16	Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia, 2006, 20, 1751-1758.	7.2	38
17	Mesalazine inhibits the <i>β</i> â€catenin signalling pathway acting through the upregulation of μâ€protocadherin gene in coloâ€rectal cancer cells. Alimentary Pharmacology and Therapeutics, 2010, 31, 108-119.	3.7	32
18	Genomic expression during human myelopoiesis. BMC Genomics, 2007, 8, 264.	2.8	31

Roberta Zini

#	Article	IF	CITATIONS
19	miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1. Stem Cells and Development, 2016, 25, 1433-1443.	2.1	31
20	Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants. Scientific Reports, 2019, 9, 10558.	3.3	31
21	Role of CD34 Antigen in Myeloid Differentiation of Human Hematopoietic Progenitor Cells. Stem Cells, 2008, 26, 950-959.	3.2	30
22	High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis. PLoS ONE, 2010, 5, e15277.	2.5	30
23	Isolation and characterization of a murine resident liver stem cell. Cell Death and Differentiation, 2008, 15, 123-133.	11.2	29
24	CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer Journal, 2017, 7, 638.	6.2	27
25	Correlation between differentiation plasticity and mRNA expression profiling of CD34+-derived CD14â^' and CD14+ human normal myeloid precursors. Cell Death and Differentiation, 2005, 12, 1588-1600.	11.2	22
26	Molecular profile of CD34+ stem/progenitor cells according to JAK2V617F mutation status in essential thrombocythemia. Leukemia, 2009, 23, 997-1000.	7.2	22
27	Bone Marrow-Derived Hematopoietic Cells Undergo Myogenic Differentiation Following a Pax-7 Independent Pathway. Stem Cells, 2010, 28, 965-973.	3.2	22
28	Bone marrow–specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood, 2018, 132, 2053-2066.	1.4	20
29	Role of TGF â€Î²1/miRâ€382â€5p/ SOD 2 axis in the induction of oxidative stress in CD 34+ cells from primary myelofibrosis. Molecular Oncology, 2018, 12, 2102-2123.	4.6	19
30	Eosinophils, but not neutrophils, exhibit an efficient DNA repair machinery and high nucleolar activity. Haematologica, 2007, 92, 1311-1318.	3.5	18
31	Calreticulin Affects Hematopoietic Stem/Progenitor Cell Fate by Impacting Erythroid and Megakaryocytic Differentiation. Stem Cells and Development, 2018, 27, 225-236.	2.1	17
32	Co-Culture of Hematopoietic Stem/Progenitor Cells with Human Osteblasts Favours Mono/Macrophage Differentiation at the Expense of the Erythroid Lineage. PLoS ONE, 2013, 8, e53496.	2.5	16
33	Cytokine-Induced Killer Cells Express CD39, CD38, CD203a, CD73 Ectoenzymes and P1 Adenosinergic Receptors. Frontiers in Pharmacology, 2018, 9, 196.	3.5	15
34	Development of an IL-6 antagonist peptide that induces apoptosis in 7TD1 cells. Peptides, 2003, 24, 1207-1220.	2.4	14
35	Abnormal expression patterns of <i>WT1-as, MEG3</i> and <i>ANRIL</i> long non-coding RNAs in CD34+ cells from patients with primary myelofibrosis and their clinical correlations. Leukemia and Lymphoma, 2015, 56, 492-496.	1.3	14
36	Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis. International Journal of Molecular Sciences, 2017, 18, 145.	4.1	14

Roberta Zini

#	Article	IF	CITATIONS
37	Valproic acid triggers erythro/megakaryocyte lineage decision through induction of GFI1B and MLLT3 expression. Experimental Hematology, 2012, 40, 1043-1054.e6.	0.4	13
38	miR-494-3p overexpression promotes megakaryocytopoiesis in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6. Oncotarget, 2017, 8, 21380-21397.	1.8	13
39	A fine-tuned β-catenin regulation during proliferation of corneal endothelial cells revealed using proteomics analysis. Scientific Reports, 2020, 10, 13841.	3.3	11
40	Analytic and Dynamic Secretory Profile of Patient-Derived Cytokine-Induced Killer Cells. Molecular Medicine, 2017, 23, 235-246.	4.4	9
41	Gene expression profile correlates with molecular and clinical features in patients with myelofibrosis. Blood Advances, 2021, 5, 1452-1462.	5.2	8
42	Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis. International Journal of Cancer, 2016, 138, 1657-1669.	5.1	6
43	Calreticulin Ins5 and Del52 Mutations Impair Unfolded Protein and Oxidative Stress Responses in Hematopoietic Cells. Blood, 2018, 132, 4332-4332.	1.4	1
44	Bone Marrow-Specific Loss of ABI1 Induces Myelofibrosis through a Mechanism Involving Activation of NFκB. Blood, 2016, 128, 1203-1203.	1.4	1
45	Purinergic Signaling Modulates Human Bone Marrow-Derived Mesenchymal Stem Cells Function Blood, 2009, 114, 1441-1441.	1.4	1
46	In Vitro and In Vivo Induction of Human Hematopoietic Stem Cell Migration by Extracellular UTP Blood, 2005, 106, 1730-1730.	1.4	0
47	Regulatory Mrna/Microrna Networks in CD34+ Cells From Primary Myelofibrosis Blood, 2012, 120, 2854-2854.	1.4	0
48	Integrative Analysis Of mRNA/miRNA Expression Profiles Identified JARID2 As a Shared Target Of Deregulated Mirnas In Primary Myelofibrosis. Blood, 2013, 122, 1600-1600.	1.4	0
49	C-Myb Restrains Megakaryopoiesis through the Hsa-MiR-486-3p-Driven Down-Regulation of C-Maf. Blood, 2014, 124, 5124-5124.	1.4	0
50	Integrative Analysis of Copy Number and Gene Expression Data Suggests Novel Pathogenetic Mechanisms in Primary Myelofibrosis. Blood, 2015, 126, 2830-2830.	1.4	0
51	MAF Induces Inflammatory Mediators Involved in the Pathogenesis of Primary Myelofibrosis. Blood, 2016, 128, 3132-3132.	1.4	0
52	MiR-494-3p Overexpression Leads to SOCS6 Downregulation and Supports Megakaryocytopoiesis in Primary Myelofibrosis CD34+ Hematopoietic Stem/Progenitor Cells. Blood, 2016, 128, 4272-4272.	1.4	0