Philippe Cubry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7928814/publications.pdf

Version: 2024-02-01

414414 471509 1,553 32 17 32 citations h-index g-index papers 37 37 37 1983 docs citations times ranked citing authors all docs

T

#	Article	IF	CITATIONS
1	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
2	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	21.4	219
3	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106
4	The Rise and Fall of African Rice Cultivation Revealed by Analysis of 246 New Genomes. Current Biology, 2018, 28, 2274-2282.e6.	3.9	84
5	A western Sahara centre of domestication inferred from pearl millet genomes. Nature Ecology and Evolution, 2018, 2, 1377-1380.	7.8	78
6	Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Annals of Botany, 2012, 109, 937-951.	2.9	73
7	Yam genomics supports West Africa as a major cradle of crop domestication. Science Advances, 2019, 5, eaaw1947.	10.3	71
8	Diversity in coffee assessed with SSR markers: structure of the genus <i>Coffea</i> and perspectives for breeding. Genome, 2008, 51, 50-63.	2.0	68
9	Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nature Communications, 2020, 11, 4488.	12.8	63
10	Genetic differentiation of wild and cultivated populations: diversity of <i>Coffea canephora </i> Pierre in Uganda. Genome, 2009, 52, 634-646.	2.0	61
11	Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genetic Resources and Crop Evolution, 2013, 60, 483-501.	1.6	54
12	Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nature Communications, 2020, 11, 5274.	12.8	45
13	Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora. Tree Genetics and Genomes, 2011, 7, 781-798.	1.6	34
14	Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora. Genetica, 2014, 142, 185-199.	1.1	33
15	An initial assessment of linkage disequilibrium (LD) in coffee trees: LD patterns in groups of Coffea canephora Pierre using microsatellite analysis. BMC Genomics, 2013, 14, 10.	2.8	21
16	Development and characterization of a new set of 164 polymorphic <scp>EST</scp> â€≺scp>SSRmarkers for diversity and breeding studies in rubber tree (<i><i><i><scp>H</scp>evea brasiliensis) Tj ETQq0 0 0 rgBT</i></i></i>	Ov erb ock I	10 ½ £150 137 1
17	Coffee Coffea canephora Pierre genetic improvement: Acquired knowledge, strategies and perspectives. Cahiers Agricultures, 2012, 21, 143-153.	0.9	19
18	Phylogeography and population genetics of black alder (Alnus glutinosa (L.) Gaertn.) in Ireland: putting it in a European context. Tree Genetics and Genomes, 2015, 11, 1.	1.6	18

#	Article	IF	CITATIONS
19	QTL detection for growth and latex production in a full-sib rubber tree population cultivated under suboptimal climate conditions. BMC Plant Biology, 2018, 18, 223.	3.6	18
20	Genome Wide Association Study Pinpoints Key Agronomic QTLs in African Rice Oryza glaberrima. Rice, 2020, 13, 66.	4.0	16
21	The Empirical Distribution of Singletons for Geographic Samples of DNA Sequences. Frontiers in Genetics, 2017, 8, 139.	2.3	13
22	Assessment of Genetic Diversity of Rice in Registered Cultivars and Farmers' Fields in Burkina Faso. Crops, 2021, 1, 129-140.	1.4	12
23	Physiological and genetic control of transpiration efficiency in African rice, <i>Oryza glaberrima</i> Steud. Journal of Experimental Botany, 2022, 73, 5279-5293.	4.8	12
24	Impact of past climatic and recent anthropogenic factors on wild yam genetic diversity. Molecular Ecology, 2011, 20, 1612-1623.	3.9	10
25	Genetic diversity and population structure in <i>Vitis</i> species illustrate phylogeographic patterns in eastern North America. Molecular Ecology, 2021, 30, 2333-2348.	3.9	9
26	New insights on spatial genetic structure and diversity of Coffea canephora (Rubiaceae) in Upper Guinea based on old herbaria. Plant Ecology and Evolution, 2020, 153, 82-100.	0.7	7
27	Adaptive potential of <i>Coffea canephora</i> from Uganda in response to climate change. Molecular Ecology, 2022, 31, 1800-1819.	3.9	7
28	Generalization of the $\langle scp \rangle \langle i \rangle Q \langle i \rangle \langle sub \rangle ST \langle sub \rangle \langle scp \rangle$ framework in hierarchically structured populations: Impacts of inbreeding and dominance. Molecular Ecology Resources, 2017, 17, e76-e83.	4.8	6
29	Novel Post-Glacial Haplotype Evolution in Birch—A Case for Conserving Local Adaptation. Forests, 2021, 12, 1246.	2.1	4
30	Interactions between microenvironment, selection and genetic architecture drive multiscale adaptation in a simulation experiment. Journal of Evolutionary Biology, 2022, 35, 451-466.	1.7	3
31	Population Genomics of Crop Domestication: Current State and Perspectives. Population Genomics, 2018, , 685-707.	0.5	1
32	Coalescent Models of Demographic History: Application to Plant Domestication. Population Genomics, 2020, , $1.$	0.5	0