
Mark J Rutherford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7926795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Case-ascertainment of acute myocardial infarction hospitalizations in cancer patients: a cohort study using English linked electronic health data. European Heart Journal Quality of Care & Clinical Outcomes, 2022, 8, 86-95.	4.0	5
2	International differences in lung cancer survival by sex, histological type and stage at diagnosis: an ICBP SURVMARK-2 Study. Thorax, 2022, 77, 378-390.	5.6	23
3	Mortality disparities and deprivation among people with intellectual disabilities in England: 2000–2019. Journal of Epidemiology and Community Health, 2022, 76, 168-174.	3.7	12
4	A way to explore the existence of "immortals―in cancer registry data – An illustration using data from ICBP SURVMARK-2. Cancer Epidemiology, 2022, 76, 102085.	1.9	3
5	Five ways to improve international comparisons of cancer survival: lessons learned from ICBP SURVMARK-2. British Journal of Cancer, 2022, 126, 1224-1228.	6.4	3
6	Non-parametric estimation of reference adjusted, standardised probabilities of all-cause death and death due to cancer for population group comparisons. BMC Medical Research Methodology, 2022, 22, 2.	3.1	3
7	Minimum sample size calculations for external validation of a clinical prediction model with a timeâ€ŧoâ€event outcome. Statistics in Medicine, 2022, 41, 1280-1295.	1.6	34
8	Immortal time bias for life-long conditions in retrospective observational studies using electronic health records. BMC Medical Research Methodology, 2022, 22, 86.	3.1	20
9	Pancreatic cancer survival by stage and age in seven high-income countries (ICBP SURVMARK-2): a population-based study. British Journal of Cancer, 2022, 126, 1774-1782.	6.4	7
10	Health Needs and Their Relationship with Life Expectancy in People with and without Intellectual Disabilities in England. International Journal of Environmental Research and Public Health, 2022, 19, 6602.	2.6	2
11	Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility. BMC Medical Research Methodology, 2022, 22, .	3.1	6
12	Reference-Adjusted Loss in Life Expectancy for Population-Based Cancer Patient Survival Comparisons—with an Application to Colon Cancer in Sweden. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1720-1726.	2.5	4
13	Capturing simple and complex time-dependent effects using flexible parametric survival models: A simulation study. Communications in Statistics Part B: Simulation and Computation, 2021, 50, 3777-3793.	1.2	19
14	International trends in oesophageal cancer survival by histological subtype between 1995 and 2014. Gut, 2021, 70, gutjnl-2020-321089.	12.1	29
15	Colon and rectal cancer survival in seven high-income countries 2010–2014: variation by age and stage at diagnosis (the ICBP SURVMARK-2 project). Gut, 2021, 70, 114-126.	12.1	71
16	Understanding the impact of sex and stage differences on melanoma cancer patient survival: a SEER-based study. British Journal of Cancer, 2021, 124, 671-677.	6.4	23
17	Exploring the impact of cancer registry completeness on international cancer survival differences: a simulation study. British Journal of Cancer, 2021, 124, 1026-1032.	6.4	12
18	Estimating restricted mean survival time and expected life-years lost in the presence of competing risks within flexible parametric survival models. BMC Medical Research Methodology, 2021, 21, 52.	3.1	9

#	Article	IF	CITATIONS
19	The impact of excluding or including Death Certificate Initiated (DCI) cases on estimated cancer survival: A simulation study. Cancer Epidemiology, 2021, 71, 101881.	1.9	9
20	The impact of reclassifying cancers of unspecified histology on international differences in survival for small cell and nonâ€small cell lung cancer (<scp>ICBP SurvMark</scp> â€2 project). International Journal of Cancer, 2021, 149, 1013-1020.	5.1	11
21	Data Resource Profile: The Virtual Cardio-Oncology Research Initiative (VICORI) linking national English cancer registration and cardiovascular audits. International Journal of Epidemiology, 2021, , .	1.9	7
22	Comparison of liver cancer incidence and survival by subtypes across seven highâ€income countries. International Journal of Cancer, 2021, 149, 2020-2031.	5.1	30
23	Inverse probability weighting and doubly robust standardization in the relative survival framework. Statistics in Medicine, 2021, 40, 6069-6092.	1.6	1
24	Mortality, predictors and causes among people with intellectual disabilities: A systematic narrative review supplemented by machine learning. Journal of Intellectual and Developmental Disability, 2021, 46, 102-114.	1.6	8
25	Understanding disparities in cancer prognosis: An extension of mediation analysis to the relative survival framework. Biometrical Journal, 2021, 63, 341-353.	1.0	7
26	International variation in oesophageal and gastric cancer survival 2012–2014: differences by histological subtype and stage at diagnosis (an ICBP SURVMARK-2 population-based study). Gut, 2021, , gutjnl-2021-325266.	12.1	10
27	Statistics on mortality following acute myocardial infarction in 842 897 Europeans. Cardiovascular Research, 2020, 116, 149-157.	3.8	31
28	Reference-adjusted and standardized all-cause and crude probabilities as an alternative to net survival in population-based cancer studies. International Journal of Epidemiology, 2020, 49, 1614-1623.	1.9	10
29	Impact on survival of modelling increased surgical resection rates in patients with non-small-cell lung cancer and cardiovascular comorbidities: a VICORI study. British Journal of Cancer, 2020, 123, 471-479.	6.4	9
30	Can different definitions of date of cancer incidence explain observed international variation in cancer survival? An ICBP SURVMARK-2 study. Cancer Epidemiology, 2020, 67, 101759.	1.9	7
31	Marginal measures and causal effects using the relative survival framework. International Journal of Epidemiology, 2020, 49, 619-628.	1.9	10
32	Estimation of age-standardized net survival, even when age-specific data are sparse. Cancer Epidemiology, 2020, 67, 101745.	1.9	10
33	Exploring variations in ovarian cancer survival by age and stage (ICBP SurvMark-2): A population-based study. Gynecologic Oncology, 2020, 157, 234-244.	1.4	27
34	Temporal recalibration for improving prognostic model development and risk predictions in settings where survival is improving over time. International Journal of Epidemiology, 2020, 49, 1316-1325.	1.9	26
35	Illustration of different modelling assumptions for estimation of loss in expectation of life due to cancer. BMC Medical Research Methodology, 2019, 19, 145.	3.1	17
36	Conditional crude probabilities of death for English cancer patients. British Journal of Cancer, 2019, 121, 883-889.	6.4	8

Mark J Rutherford

#	Article	IF	CITATIONS
37	Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP) Tj ETQq1	10,7843 10.7	814 rgBT /C 634
38	Loss in life expectancy and gain in life years as measures of cancer impact. Cancer Epidemiology, 2019, 60, 168-173.	1.9	15
39	Understanding the impact of socioeconomic differences in colorectal cancer survival: potential gain in life-years. British Journal of Cancer, 2019, 120, 1052-1058.	6.4	37
40	Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence. Clinical Cancer Research, 2019, 25, 4255-4263.	7.0	281
41	Potential gain in life years for Swedish women with breast cancer if stage and survival differences between education groups could be eliminated – Three what-if scenarios. Breast, 2019, 45, 75-81.	2.2	10
42	Plasma cell-free DNA (cfDNA) as a predictive and prognostic marker in patients with metastatic breast cancer. Breast Cancer Research, 2019, 21, 149.	5.0	89
43	Robustness of individual and marginal model-based estimates: A sensitivity analysis of flexible parametric models. Cancer Epidemiology, 2019, 58, 17-24.	1.9	31
44	Direct likelihood inference on the causeâ€specific cumulative incidence function: A flexible parametric regression modelling approach. Statistics in Medicine, 2018, 37, 82-97.	1.6	16
45	InterPreT cancer survival: A dynamic web interactive prediction cancer survival tool for health-care professionals and cancer epidemiologists. Cancer Epidemiology, 2018, 56, 46-52.	1.9	10
46	Assessment of lead-time bias in estimates of relative survival for breast cancer. Cancer Epidemiology, 2017, 46, 50-56.	1.9	17
47	Estimating the impact of a cancer diagnosis on life expectancy by socio-economic group for a range of cancer types in England. British Journal of Cancer, 2017, 117, 1419-1426.	6.4	41
48	Sex Differences in Treatments, Relative Survival, and Excess Mortality Following Acute Myocardial Infarction: National Cohort Study Using the SWEDEHEART Registry. Journal of the American Heart Association, 2017, 6, .	3.7	134
49	A Flexible Parametric Competing-risks Model Using a Direct Likelihood Approach for the Cause-specific Cumulative Incidence Function. The Stata Journal, 2017, 17, 462-489.	2.2	29
50	stpm2cr: A flexible parametric competing risks model using a direct likelihood approach for the cause-specific cumulative incidence function. The Stata Journal, 2017, 17, 462-489.	2.2	10
51	Care needed in interpretation of cancer survival measures. Lancet, The, 2015, 385, 1162-1163.	13.7	2
52	Understanding the impact of socioeconomic differences in breast cancer survival in England and Wales: Avoidable deaths and potential gain in expectation of life. Cancer Epidemiology, 2015, 39, 118-125.	1.9	18
53	The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. Journal of Statistical Computation and Simulation, 2015, 85, 777-793.	1.2	80
54	Comparison of different approaches to estimating age standardized net survival. BMC Medical Research Methodology, 2015, 15, 64.	3.1	57

Mark J Rutherford

#	Article	IF	CITATIONS
55	Regional variations in German mesothelioma mortality rates: 2000–2010. Cancer Causes and Control, 2014, 25, 615-624.	1.8	30
56	Estimating net survival in populationâ€based cancer studies. International Journal of Cancer, 2013, 133, 519-521.	5.1	24
57	How much of the deprivation gap in cancer survival can be explained by variation in stage at diagnosis: An example from breast cancer in the East of England. International Journal of Cancer, 2013, 133, 2192-2200.	5.1	48
58	A comprehensive assessment of the impact of errors in the cancer registration process on 1- and 5-year relative survival estimates. British Journal of Cancer, 2013, 108, 691-698.	6.4	20
59	Projecting Cancer Incidence using Age-period-cohort Models Incorporating Restricted Cubic Splines. International Journal of Biostatistics, 2012, 8, 33.	0.7	14
60	Comparison of methods for calculating relative survival in population-based studies. Cancer Epidemiology, 2012, 36, 16-21.	1.9	62
61	Age–period–cohort Modeling. The Stata Journal, 2010, 10, 606-627.	2.2	68
62	Obtaining long-term stage-specific relative survival estimates in the presence of incomplete historical stage information. British Journal of Cancer, 0, , .	6.4	0