

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of amorphous FeNiCo trimetallic hybrid electrode from ZIF precursors for efficient oxygen evolution reaction. Nanotechnology, 2022, 33, 035403.	2.6	1
2	A generalized approach to adjust the catalytic activity of borocarbonitride for alkane oxidative dehydrogenation reactions. Journal of Catalysis, 2022, 405, 105-115.	6.2	15
3	Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: Improvement of propene selectivity and oxidation resistance. Carbon, 2022, 189, 199-209.	10.3	15
4	Preparation of carbon microspheres from lignin–urea–formaldehyde resin for application in high-performance supercapacitor. Wood Science and Technology, 2022, 56, 367-387.	3.2	10
5	Oxygenâ€Functionalized Boron Nitride for the Oxidative Dehydrogenation of Propane – The Case for Supported Liquid Phase Catalysis. ChemCatChem, 2022, 14, .	3.7	7
6	Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for oxidative coupling of amines in aqueous solution. Catalysis Science and Technology, 2022, 12, 2837-2845.	4.1	16
7	Controllable Fabrication of PdOâ€PdAu Ternary Hollow Shells: Synergistic Acceleration of H ₂ â€5ensing Speed via Morphology Regulation and Electronic Structure Modulation. Small, 2022, 18, e2106874.	10.0	17
8	Electrochemically Assisted Cycloaddition of Carbon Dioxide to Styrene Oxide on Copper/carbon Hybrid Electrodes: Active Species and Reaction Mechanism. Chemistry - A European Journal, 2022, , .	3.3	2
9	Highly efficient electroreduction of oxygen to hydrogen peroxide on carbon catalyst via electrode-electrolyte interface engineering. Chemical Engineering Journal, 2022, 444, 136665.	12.7	13
10	Pseudomorphic Replacement in the Transformation between Metal–Organic Frameworks toward Three-Dimensional Hierarchical Nanostructures. Chemistry of Materials, 2022, 34, 5356-5365.	6.7	11
11	Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Science China Materials, 2022, 65, 3062-3068.	6.3	7
12	Preparation of MOF Film/Aerogel Composite Catalysts via Substrate‣eeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO 2 Cycloaddition. Angewandte Chemie, 2021, 133, 711-715.	2.0	6
13	Synergetic modulation of graphene oxide and metal oxide particles for exploring integrated capacitance of milk colloid-derived carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125599.	4.7	2
14	Oxidative dehydrogenation on nanocarbon: Polydopamine hollow nanospheres as novel highly efficient catalysts. FlatChem, 2021, 25, 100220.	5.6	11
15	Synthesis strategies towards amorphous porous carbons with selective oxygen functionalization for the application as reference material. Carbon, 2021, 171, 658-670.	10.3	11
16	Preparation of MOF Film/Aerogel Composite Catalysts via Substrate‣eeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO ₂ Cycloaddition. Angewandte Chemie - International Edition, 2021, 60, 701-705.	13.8	107
17	Enhanced electrochemical performance of MnO ₂ nanoparticles: graphene aerogels as conductive substrates and capacitance contributors. Dalton Transactions, 2021, 50, 8776-8784.	3.3	6
18	Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metal–organic framework nanoarrays: enhancement from electronic structure modulation. Journal of Materials Chemistry A, 2021, 9, 14270-14275.	10.3	48

#	Article	IF	CITATIONS
19	Dehydration of n-butanol on phosphate-modified carbon nanotubes: active site and intrinsic catalytic activity. Catalysis Science and Technology, 2021, 11, 4500-4508.	4.1	7
20	Nanoscale Hybrid Amorphous/Graphitic Carbon as Key Towards Nextâ€Generation Carbonâ€Based Oxidative Dehydrogenation Catalysts. Angewandte Chemie - International Edition, 2021, 60, 5898-5906.	13.8	37
21	Phenolâ€enriched hydroxy depolymerized lignin by microwave alkali catalysis to prepare highâ€adhesive biomass composites. Polymer Engineering and Science, 2021, 61, 1463-1475.	3.1	19
22	Methodology for the identification of carbonyl absorption maxima of carbon surface oxides in DRIFT spectra. Carbon Trends, 2021, 3, 100020.	3.0	9
23	Efficient Nonâ€Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed Cobaltâ€nitrogen Compounds on Carbon Nanotubes. ChemCatChem, 2021, 13, 3067-3073.	3.7	21
24	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angewandte Chemie - International Edition, 2021, 60, 14528-14535.	13.8	98
25	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angewandte Chemie, 2021, 133, 14649-14656.	2.0	18
26	An Electrochemical Sensor for H ₂ O ₂ Based on Au Nanoparticles Embedded in UiO-66 Metal–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 6103-6110.	5.0	39
27	Site-directed reduction engineering within bimetal-organic frameworks for efficient size-selective catalysis. Matter, 2021, 4, 2919-2935.	10.0	36
28	Nanoskaliger hybrider amorph/graphitischer Kohlenstoff als Schlüssel zur nÃæhsten Generation von kohlenstoffbasierten Katalysatoren für oxidative Dehydrierungen. Angewandte Chemie, 2021, 133, 5962-5971.	2.0	3
29	Nitrogen-Doped Graphene Monolith Catalysts for Oxidative Dehydrogenation of Propane. Frontiers in Chemistry, 2021, 9, 759936.	3.6	5
30	Preparation of phosphorus-doped Mn _{<i>x</i>} Cd _{1â^'<i>x</i>} S with boosted photocatalytic hydrogen evolution from pure water. Sustainable Energy and Fuels, 2021, 5, 6460-6469.	4.9	8
31	Oxidative dehydrogenation of ethyl lactate over nanocarbon catalysts: Effect of oxygen functionalities and defects. Catalysis Today, 2020, 347, 96-101.	4.4	9
32	2D layered MoS2 loaded on Bi12O17Cl2 nanosheets: An effective visible-light photocatalyst. Ceramics International, 2020, 46, 7438-7445.	4.8	30
33	Oxygen assisted butanol conversion on bifunctional carbon nanotube catalysts: Activity of oxygen functionalities. Carbon, 2020, 170, 580-588.	10.3	20
34	Primary amine coupling on nanocarbon catalysts: Reaction mechanism and kinetics via fluorescence probe analysis. Green Energy and Environment, 2020, 5, 453-460.	8.7	8
35	The improvement of photocatalytic performance for hydrogen evolution over mesoporous g-C ₃ N ₄ modified with nitrogen defects. Sustainable Energy and Fuels, 2020, 4, 5179-5187.	4.9	43
36	Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. CheM, 2020, 6, 1443-1458.	11.7	141

#	Article	IF	CITATIONS
37	g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy. Applied Catalysis A: General, 2020, 599, 117618.	4.3	86
38	Methanol oxidative dehydrogenation and dehydration on carbon nanotubes: active sites and basic reaction kinetics. Catalysis Science and Technology, 2020, 10, 4952-4959.	4.1	24
39	Copper oxide hierarchical morphology derived from MOF precursors for enhancing ethanol vapor sensing performance. Journal of Materials Chemistry C, 2020, 8, 9671-9677.	5.5	29
40	Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. Journal of Energy Chemistry, 2020, 49, 348-357.	12.9	48
41	Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Science Advances, 2020, 6, eaba5778.	10.3	45
42	Fabrication of N, S co-doped graphene aerogel for high-performance supercapacitors: π-conjugated planar molecules as efficient dopants and pillared agents. Applied Surface Science, 2020, 529, 147022.	6.1	38
43	CoNi-based metal–organic framework nanoarrays supported on carbon cloth as bifunctional electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698.	2.8	21
44	Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites. Journal of Colloid and Interface Science, 2020, 573, 376-383.	9.4	78
45	Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Nanotechnology, 2020, 31, 255604.	2.6	5
46	Fabrication of mesoporous MOF nanosheets via surfactant-template method for C–S coupling reactions. Microporous and Mesoporous Materials, 2020, 303, 110254.	4.4	19
47	One-step preparation of novel K+ and cyano-group co-doped crystalline polymeric carbon nitride with highly efficient H2 evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125023.	4.7	28
48	Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction. Chemical Communications, 2019, 55, 9343-9346.	4.1	19
49	Oxidative dehydrogenation on nanocarbon: Effect of heteroatom doping. Applied Catalysis B: Environmental, 2019, 258, 117982.	20.2	37
50	Synthesis and photo-catalytic activity of porous g-C3N4: Promotion effect of nitrogen vacancy in H2 evolution and pollutant degradation reactions. International Journal of Hydrogen Energy, 2019, 44, 16315-16326.	7.1	105
51	Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582, 117098.	4.3	23
52	Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol. Journal of Membrane Science, 2019, 582, 30-36.	8.2	45
53	Fabrication of Polydopamine Modified Carbon Nanotube Hybrids and their Catalytic Activity in Ethylbenzene Dehydrogenation. ChemCatChem, 2019, 11, 2073-2078.	3.7	22
54	Biomolecule-derived N/S co-doped CNT-graphene hybrids exhibiting excellent electrochemical activities. Journal of Power Sources, 2019, 413, 408-417.	7.8	72

#	Article	IF	CITATIONS
55	Oxidative Dehydrogenation on Nanocarbon: Revealing the Reaction Mechanism via In Situ Experimental Strategies. ChemCatChem, 2019, 11, 397-400.	3.7	9
56	Surface chemistry of nanocarbon: Characterization strategies from the viewpoint of catalysis and energy conversion. Carbon, 2019, 143, 915-936.	10.3	61
57	Oxygen Electrocatalysis at Mn ^{III} –O <i>_x</i> –C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Interfaces, 2019, 11, 706-713.	8.0	7
58	Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. Journal of Colloid and Interface Science, 2018, 519, 1-10.	9.4	90
59	Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods. Accounts of Chemical Research, 2018, 51, 640-648.	15.6	87
60	Ru/FeO x catalyst performance design: Highly dispersed Ru species for selective carbon dioxide hydrogenation. Chinese Journal of Catalysis, 2018, 39, 157-166.	14.0	14
61	Carbon nitride modified nanocarbon materials as efficient non-metallic catalysts for alkane dehydrogenation. Catalysis Today, 2018, 301, 48-54.	4.4	19
62	Hydration of phenylacetylene on sulfonated carbon materials: active site and intrinsic catalytic activity. RSC Advances, 2018, 8, 38150-38156.	3.6	9
63	Oxidative dehydrogenation of ethylbenzene on nanocarbon: Kinetics and reaction mechanism. Journal of Catalysis, 2018, 368, 1-7.	6.2	31
64	Fabrication of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Interfaces, 2018, 10, 25960-25966.	8.0	64
65	Construction of 2D/2D layered g-C ₃ N ₄ /Bi ₁₂ O ₁₇ Cl ₂ hybrid material with matched energy band structure and its improved photocatalytic performance. RSC Advances, 2018, 8, 24500-24508.	3.6	43
66	Oxidative Dehydrogenation on Nanocarbon: Revealing the Catalytic Mechanism using Model Catalysts. ACS Catalysis, 2017, 7, 1424-1427.	11.2	48
67	In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Fe–N Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.	6.7	23
68	Agl Nanoparticles Evenly Dispersed on 2D Porous Bi ₅ O ₇ I Sheets: Simple Synthesis and Excellent Photocatalytic Performance. ChemistrySelect, 2017, 2, 8535-8540.	1.5	10
69	Molybdenum Carbide Modified Nanocarbon Catalysts for Alkane Dehydrogenation Reactions. ACS Catalysis, 2017, 7, 5820-5827.	11.2	55
70	Heteropoly Acid/Nitrogen Functionalized Onionâ€like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions. Chemistry - an Asian Journal, 2016, 11, 491-497.	3.3	14
71	Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction. RSC Advances, 2016, 6, 99570-99576.	3.6	7
72	Oxygen breaks into carbon nanotubes and abstracts hydrogen from propane. Carbon, 2016, 96, 631-640.	10.3	38

#	Article	IF	CITATIONS
73	Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure–Function Relationships. Angewandte Chemie - International Edition, 2015, 54, 13682-13685.	13.8	76
74	Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale, 2014, 6, 6609-6616.	5.6	146
75	Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. Journal of Materials Chemistry A, 2014, 2, 12475-12483.	10.3	123
76	Noncovalent functionalization of multi-walled carbon nanotubes as metal-free catalysts for the reduction of nitrobenzene. Catalysis Science and Technology, 2014, 4, 1730-1733.	4.1	20
77	Metal-Free Carbon Catalysts for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2014, 4, 3212-3218.	11.2	172
78	Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solidâ€Acid Catalysts. ChemCatChem, 2014, 6, 2613-2620.	3.7	19
79	Fabrication of transparent and luminescent CdTe/TiO2 hybrid film with enhanced photovoltaic property. Materials Letters, 2013, 107, 60-63.	2.6	7
80	Oxidative Dehydrogenation on Nanocarbon: Identification and Quantification of Active Sites by Chemical Titration. Angewandte Chemie - International Edition, 2013, 52, 14224-14228.	13.8	246
81	Surfactant-free hydrothermal synthesis of sub-10 nm γ-Fe2O3–polymer porous composites with high catalytic activity for reduction of nitroarenes. Chemical Communications, 2013, 49, 10088.	4.1	42
82	Supramolecular assembly of chiral polyoxometalate complexes for asymmetric catalytic oxidation of thioethers. Journal of Materials Chemistry, 2012, 22, 9181.	6.7	49
83	Surfactantâ€Encapsulated Polyoxometalates as Immobilized Supramolecular Catalysts for Highly Efficient and Selective Oxidation Reactions. Chemistry - A European Journal, 2010, 16, 1068-1078.	3.3	103
84	Covalent Dispersion of Surfactant-Encapsulated Polyoxometalates and In Situ Incorporation of Metal Nanoparticles in Silica Spheres. Langmuir, 2010, 26, 4437-4442.	3.5	24
85	Polyoxometalate/polymer hybrid materials: fabrication and properties. Polymer International, 2009, 58, 1217-1225.	3.1	169
86	A novel polymerizable pigment based on surfactant-encapsulated polyoxometalates and their application in polymer coloration. Dyes and Pigments, 2008, 79, 105-110.	3.7	12
87	Incorporation of Polyoxometalates Into Polystyrene Latex by Supramolecular Encapsulation and Miniemulsion Polymerization. Macromolecular Rapid Communications, 2008, 29, 431-436.	3.9	40
88	Stable Photochromism and Controllable Reduction Properties of Surfactant-Encapsulated Polyoxometalate/Silica Hybrid Films. Journal of Physical Chemistry B, 2008, 112, 8257-8263.	2.6	98
89	Onionlike Hybrid Assemblies Based on Surfactant-Encapsulated Polyoxometalates. Angewandte Chemie - International Edition, 2007, 46, 1300-1303.	13.8	234
90	Preparation and gas permeation of supported Î ³ -Al2O3 membranes used as substrate layer for microporous membranes. Journal Wuhan University of Technology, Materials Science Edition, 2005, 20, 27-30.	1.0	1

#	Article	IF	CITATIONS
91	Self-Assembled Multibilayers of Europium Alkanoates:Â Structure, Photophysics, and Mesomorphic Behavior. Journal of Physical Chemistry B, 2005, 109, 21669-21676.	2.6	40

92 The Highâ€Temperature Acidity Paradox of Oxidized Carbon: An inâ€...situ DRIFTS Study. ChemCatChem, 0, , . 3.7 3