Wei Qi

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/7924901/publications.pdf
Version: 2024-02-01

7	Nitrogen-doped onion-like carbon: a novel and efficient metal-free catalyst for epoxidation reaction. Journal of Materials Chemistry A, 2014, 2, 12475-12483.	10.3	123
8	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€ Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO ₂ Cycloaddition. Angewandte Chemie - International Edition, 2021, 60, 701-705.	13.8	107
9	Synthesis and photo-catalytic activity of porous g-C3N4: Promotion effect of nitrogen vacancy in H 2 evolution and pollutant degradation reactions. International Journal of Hydrogen Energy, 2019, 44, 16315-16326.	7.1	105
10	Surfactantâ€Encapsulated Polyoxometalates as Immobilized Supramolecular Catalysts for Highly Efficient and Selective Oxidation Reactions. Chemistry - A European Journal, 2010, 16, 1068-1078.	3.3	103
11	Stable Photochromism and Controllable Reduction Properties of Surfactant-Encapsulated Polyoxometalate/Silica Hybrid Films. Journal of Physical Chemistry B, 2008, 112, 8257-8263.	2.6	98
12	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structureâ€"Function Relationships. Angewandte Chemie International Edition, 2021, 60, 14528-14535.	13.8	98
13	Enhanced photocatalytic activity of Bi 12 O 17 Cl 2 nano-sheets via surface modification of carbon nanotubes as electron carriers. Journal of Colloid and Interface Science, 2018, 519, 1-10.	9.4	90

4.3

86

23	Oxidative Dehydrogenation on Nanocarbon: Revealing the Catalytic Mechanism using Model Catalysts. ACS Catalysis, 2017, 7, 1424-1427.	11.2	48
24	Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. Journal of Energy Chemistry, 2020, 49, 348-357.	12.9	48
25	Electrochemical oxidation of 5-hydroxymethylfurfural on ternary metalâ€"organic framework nanoarrays: enhancement from electronic structure modulation. Journal of Materials Chemistry A, 2021, 9, 14270-14275.	10.3	48

26 Two-dimensional MOF-derived nanoporous $\mathrm{Cu} / \mathrm{Cu} 2 \mathrm{O}$ networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol. Journal of Membrane Science, 2019, 582, 30-36.
8.2

45
27 Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Science Advances, 2020, 6, eaba5778.
Construction of 2D/2D layered28 g -C₃N₄|Bi<sub>12<|sub>O₁₇C|₂hybrid material withmatched energy band structure and its improved photocatalytic performance. RSC Advances, 2018, 8,24500-24508.
$29 \mathrm{~g}-\mathrm{C}<$ sub> $3</$ sub> N <sub> $4</$ sub> modified with nitrogen defects. Sustainable Energy and Fuels, 2020, 4, 4.9 43 5179-5187.
30 Surfactant-free hydrothermal synthesis of sub-10 nm 13 -Fe2O3â€"polymer porous composites with high 4.1 catalytic activity for reduction of nitroarenes. Chemical Communications, 2013, 49, 10088.
2.6 2.640Self-Assembled Multibilayers of Europium Alkanoates:Â Structure, Photophysics, and Mesomorphic40
31 Behavior. Journal of Physical Chemistry B, 2005, 109, 21669-21676.
37

> Nanoscale Hybrid Amorphous/Graphitic Carbon as Key Towards Nextâ€Generation Carbonâ€Based
> Oxidative Dehydrogenation Catalysts. Angewandte Chemie - International Edition, 2021, 60, 5898-5906.
13.8

37
$10.0 \quad 36$ catalysis. Matter, 2021, 4, 2919-2935.

39	Oxidative dehydrogenation of ethylbenzene on nanocarbon: Kinetics and reaction mechanism. Journal of Catalysis, 2018, 368, 1-7.	6.2	31
40	2D layered MoS2 loaded on Bi 12 O 17 Cl 2 nanosheets: An effective visible-light photocatalyst. Ceramics International, 2020, 46, 7438-7445.	4.8	30
41	Copper oxide hierarchical morphology derived from MOF precursors for enhancing ethanol vapor sensing performance. Journal of Materials Chemistry C, 2020, 8, 9671-9677.	5.5	29
42	One-step preparation of novel $\mathrm{K}+$ and cyano-group co-doped crystalline polymeric carbon nitride with highly efficient H2 evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125023.	4.7	28
43	Covalent Dispersion of Surfactant-Encapsulated Polyoxometalates and In Situ Incorporation of Metal Nanoparticles in Silica Spheres. Langmuir, 2010, 26, 4437-4442.	3.5	24

> Methanol oxidative dehydrogenation and dehydration on carbon nanotubes: active sites and basic reaction kinetics. Catalysis Science and Technology, 2020, 10, 4952-4959.
$4.1 \quad 24$
In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Feâe" N
Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.

Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.
$6.7 \quad 23$

46 Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on $\mathrm{RuSnB} / \mathrm{CeO} 2$ catalysts. Applied Catalysis A: General, 2019, 582, 117098.
4.3

23
Fabrication of Polydopamine Modified Carbon Nanotube Hybrids and their Catalytic Activity in
Ethylbenzene Dehydrogenation. ChemCatChem, 2019, 11, 2073-2078.
CoNi-based metalâ€"organic framework nanoarrays supported on carbon cloth as bifunctional electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698.
2.8
21

Efficient Nonâ€Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed
3.7

21
49 Cobaltâ€nitrogen Compounds on Carbon Nanotubes. ChemCatChem, 2021, 13, 3067-3073.

Noncovalent functionalization of multi-walled carbon nanotubes as metal-free catalysts for the reduction of nitrobenzene. Catalysis Science and Technology, 2014, 4, 1730-1733.
$4.1 \quad 20$

Oxygen assisted butanol conversion on bifunctional carbon nanotube catalysts: Activity of oxygen
10.3

20
51 Oxygen assisted butanol conversion on bifunct

Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solidâ€Acid Catalysts. ChemCatChem,

Controllable Fabrication of PdOâ€PdAu Ternary Hollow Shells: Synergistic Acceleration of

Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for	
oxidative coupling of amines in aqueous solution. Catalysis Science and Technology, 2022, 12,	4.1
$2837-2845$.	

63 | Ru/FeO x catalyst performance design: Highly dispersed Ru species for selective carbon dioxide |
| :--- |
| hydrogenation. Chinese Journal of Catalysis, 2018, 39, 157-166. |

Oxidative dehydrogenation of ethyl lactate over nanocarbon catalysts: Effect of oxygen
functionalities and defects. Catalysis Today, 2020, 347, 96-101.

Methodology for the identification of carbonyl absorption maxima of carbon surface oxides in DRIFT spectra. Carbon Trends, 2021, 3, 100020.

Primary amine coupling on nanocarbon catalysts: Reaction mechanism and kinetics via fluorescence probe analysis. Green Energy and Environment, 2020, 5, 453-460.

Preparation of phosphorus-doped $\mathrm{Mn}\langle\mathrm{sub}\rangle\langle\mathrm{i}\rangle \mathrm{x}\langle\mid \mathrm{i}\rangle\langle |$ sub $\rangle \mathrm{Cd}\langle$ sub \rangle lâ ${ }^{\wedge}\langle\mathrm{i}\rangle \mathrm{x}\langle\mid \mathrm{i}\rangle\langle |$ sub \rangle S with boosted

$4.9 \quad 8$

Fabrication of transparent and luminescent $\mathrm{CdTe} / \mathrm{TiO} 2$ hybrid film with enhanced photovoltaic property. Materials Letters, 2013, 107, 60-63.

Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction.
RSC Advances, 2016, 6, 99570-99576.

Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials \& Interfaces, 2019, 11, 706-713.

Dehydration of n-butanol on phosphate-modified carbon nanotubes: active site and intrinsic catalytic activity. Catalysis Science and Technology, 2021, 11, 4500-4508.

Oxygenâ€Functionalized Boron Nitride for the Oxidative Dehydrogenation of Propane â€" The Case for Supported Liquid Phase Catalysis. ChemCatChem, 2022, 14, .

Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Science China Materials, 2022, 65, 3062-3068.

Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the
Oxygen Evolution Reaction and CO 2 Cycloaddition. Angewandte Chemie, 2021, 133, 711-715.

Enhanced electrochemical performance of $\mathrm{MnO}<$ sub> $2</ s u b>$ nanoparticles: graphene aerogels as conductive substrates and capacitance contributors. Dalton Transactions, 2021, 50, 8776-8784.
3.3

6

Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Nanotechnology, 2020, 31, 255604.

Nitrogen-Doped Graphene Monolith Catalysts for Oxidative Dehydrogenation of Propane. Frontiers in Chemistry, 2021, 9, 759936.
3.6

5

Nanoskaliger hybrider amorph/graphitischer Kohlenstoff als Schl $\mathbb{A} 1 / 4$ ssel zur nÃchsten Generation von
87 kohlenstoffbasierten Katalysatoren $f \tilde{A}^{1} / 4 \mathrm{r}$ oxidative Dehydrierungen. Angewandte Chemie, 2021, 133,
$2.0 \quad 3$ 5962-5971.

91 microporous membranes. Journal Wuhan University of Technology, Materials Science Edition, 2005, evolution reaction. Nanotechnology, 2022, 33, 035403.

