List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924868/publications.pdf Version: 2024-02-01

MATSLUINCMAN

#	Article	IF	CITATIONS
1	KDM6A Regulates Cell Plasticity and Pancreatic Cancer Progression by Noncanonical Activin Pathway. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 643-667.	4.5	18
2	Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. Journal of Medicinal Chemistry, 2022, , .	6.4	1
3	Myotubularin-related phosphatase 5 is a critical determinant of autophagy in neurons. Current Biology, 2022, 32, 2581-2595.e6.	3.9	7
4	EWS::FLI1 and HOXD13 Control Tumor Cell Plasticity in Ewing Sarcoma. Clinical Cancer Research, 2022, 28, 4466-4478.	7.0	11
5	Transcriptomic Analysis of Diffuse Intrinsic Pontine Glioma (DIPG) Identifies a Targetable ALDH-Positive Subset of Highly Tumorigenic Cancer Stem-like Cells. Molecular Cancer Research, 2021, 19, 223-239.	3.4	17
6	A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair. Nature Communications, 2021, 12, 1342.	12.8	31
7	The Hydroxyquinoline Analogue YUM70 Inhibits GRP78 to Induce ER Stress–Mediated Apoptosis in Pancreatic Cancer. Cancer Research, 2021, 81, 1883-1895.	0.9	46
8	Cotranscriptional splicing efficiencies differ within genes and between cell types. Rna, 2021, 27, 829-840.	3.5	16
9	ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nature Cell Biology, 2021, 23, 595-607.	10.3	38
10	Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nature Communications, 2021, 12, 3835.	12.8	14
11	Locus-specific transcription silencing at the <i>FHIT</i> gene suppresses replication stress-induced copy number variant formation and associated replication delay. Nucleic Acids Research, 2021, 49, 7507-7524.	14.5	16
12	Characterization of novel primary miRNA transcription units in human cells using Bru-seq nascent RNA sequencing. NAR Genomics and Bioinformatics, 2020, 2, lqz014.	3.2	10
13	Multivalent Proteins Rapidly and Reversibly Phase-Separate upon Osmotic Cell Volume Change. Molecular Cell, 2020, 79, 978-990.e5.	9.7	86
14	CHD7 promotes neural progenitor differentiation in embryonic stem cells via altered chromatin accessibility and nascent gene expression. Scientific Reports, 2020, 10, 17445.	3.3	23
15	3D genome organization contributes to genome instability at fragile sites. Nature Communications, 2020, 11, 3613.	12.8	46
16	Discovery of Mitochondrial Transcription Inhibitors Active in Pancreatic Cancer Cells. ChemMedChem, 2020, 15, 2029-2039.	3.2	4
17	Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. Nature Communications, 2020, 11, 4755.	12.8	12
18	Characterization of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. Journal of Medicinal Chemistry, 2020, 63, 10263-10286.	6.4	13

#	Article	IF	CITATIONS
19	A Novel Redox Modulator Induces a GPX4-Mediated Cell Death That Is Dependent on Iron and Reactive Oxygen Species. Journal of Medicinal Chemistry, 2020, 63, 9838-9855.	6.4	31
20	Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. Rna, 2020, 26, 1680-1703.	3.5	14
21	Deletion of Glutathione S-Transferase Omega 1 Activates Type I Interferon Genes and Downregulates Tissue Factor. Cancer Research, 2020, 80, 3692-3705.	0.9	12
22	Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics, 2020, 10, 6959-6976.	10.0	20
23	Nascent Transcriptomics Reveal Cellular Prolytic Factors Upregulated Upstream of the Latent-to-Lytic Switch Protein of Epstein-Barr Virus. Journal of Virology, 2020, 94, .	3.4	11
24	Multi-omics profiling reveals key signaling pathways in ovarian cancer controlled by STAT3. Theranostics, 2019, 9, 5478-5496.	10.0	30
25	Activation of the Unfolded Protein Response via Inhibition of Protein Disulfide Isomerase Decreases the Capacity for DNA Repair to Sensitize Glioblastoma to Radiotherapy. Cancer Research, 2019, 79, 2923-2932.	0.9	47
26	ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes and Development, 2019, 33, 641-655.	5.9	20
27	Inhibition of protein disulfide isomerase in glioblastoma causes marked downregulation of DNA repair and DNA damage response genes. Theranostics, 2019, 9, 2282-2298.	10.0	35
28	Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell, 2019, 177, 837-851.e28.	28.9	88
29	IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Science Translational Medicine, 2019, 11, .	12.4	169
30	Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell, 2019, 176, 816-830.e18.	28.9	144
31	The role of H3K79 methylation in transcription and the DNA damage response. Mutation Research - Reviews in Mutation Research, 2019, 780, 48-54.	5.5	15
32	Menin regulates the serine biosynthetic pathway in Ewing sarcoma. Journal of Pathology, 2018, 245, 324-336.	4.5	35
33	Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma. Journal of Medicinal Chemistry, 2018, 61, 1576-1594.	6.4	24
34	Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma. ChemMedChem, 2018, 13, 164-177.	3.2	50
35	HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. ELife, 2018, 7, .	6.0	51
36	Synthesis and mechanistic studies of quinolin-chlorobenzothioate derivatives with proteasome inhibitory activity in pancreatic cancer cell lines. European Journal of Medicinal Chemistry, 2018, 158, 884-895.	5.5	9

#	Article	IF	CITATIONS
37	Analysis of the androgen receptor–regulated IncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nature Genetics, 2018, 50, 814-824.	21.4	196
38	RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells. Molecular Cell, 2017, 65, 272-284.	9.7	83
39	Gene length as a biological timer to establish temporal transcriptional regulation. Cell Cycle, 2017, 16, 259-270.	2.6	22
40	Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Scientific Reports, 2017, 7, 43598.	3.3	31
41	Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. Journal of Cell Science, 2017, 130, 1952-1964.	2.0	18
42	A damaged genome's transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks. Nature Communications, 2017, 8, 15656.	12.8	89
43	A Bifunctional MAPK/PI3K Antagonist for Inhibition of Tumor Growth and Metastasis. Molecular Cancer Therapeutics, 2017, 16, 2340-2350.	4.1	16
44	Identifying transcription start sites and active enhancer elements using BruUV-seq. Scientific Reports, 2016, 5, 17978.	3.3	27
45	PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes and Development, 2016, 30, 2669-2683.	5.9	88
46	Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nature Communications, 2016, 7, 13084.	12.8	53
47	Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response. Biology Open, 2016, 5, 837-847.	1.2	11
48	Genome stability versus transcript diversity. DNA Repair, 2016, 44, 81-86.	2.8	7
49	Transcription Blockage Leads to New Beginnings. Biomolecules, 2015, 5, 1600-1617.	4.0	9
50	Arsenic Disruption of DNA Damage Responses—Potential Role in Carcinogenesis and Chemotherapy. Biomolecules, 2015, 5, 2184-2193.	4.0	68
51	DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Research, 2015, 43, 2744-2756.	14.5	64
52	Zinc Finger Protein 407 (ZFP407) Regulates Insulin-stimulated Glucose Uptake and Glucose Transporter 4 (Glut4) mRNA. Journal of Biological Chemistry, 2015, 290, 6376-6386.	3.4	34
53	ATDC (Ataxia Telangiectasia Group D Complementing) Promotes Radioresistance through an Interaction with the RNF8 Ubiquitin Ligase. Journal of Biological Chemistry, 2015, 290, 27146-27157.	3.4	17
54	Guadecitabine (SGIâ€110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Molecular Oncology, 2015, 9, 1799-1814.	4.6	49

#	Article	IF	CITATIONS
55	Functional organization of the human 4D Nucleome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8002-8007.	7.1	102
56	Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Research, 2015, 25, 189-200.	5.5	152
57	Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 9-15.	1.0	10
58	Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of developmental transcription programs. Epigenetics, 2014, 9, 1613-1625.	2.7	55
59	The Long Non-Coding RNA PCAT-1 Promotes Prostate Cancer Cell Proliferation through cMyc. Neoplasia, 2014, 16, 900-908.	5.3	216
60	ATDC/TRIM29 Phosphorylation by ATM/MAPKAP Kinase 2 Mediates Radioresistance in Pancreatic Cancer Cells. Cancer Research, 2014, 74, 1778-1788.	0.9	51
61	Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA. Methods, 2014, 67, 45-54.	3.8	145
62	Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Research, 2014, 24, 896-905.	5.5	229
63	Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2240-2245.	7.1	112
64	Genome-Wide Transcriptional Effects of the Anti-Cancer Agent Camptothecin. PLoS ONE, 2013, 8, e78190.	2.5	28
65	Transcriptional Inhibition by DNA Damage as a Trigger for Cell Death. Issues in Toxicology, 2012, , 266-289.	0.1	1
66	ATDC as a novel oncogene in bladder cancer Journal of Clinical Oncology, 2012, 30, 269-269.	1.6	0
67	The DNA damage response—Repair or despair?. Environmental and Molecular Mutagenesis, 2010, 51, 879-889.	2.2	34
68	Histone Ubiquitination Associates with BRCA1-Dependent DNA Damage Response. Molecular and Cellular Biology, 2009, 29, 849-860.	2.3	126
69	Psoralen-Induced DNA Interstrand Cross-Links Block Transcription and Induce p53 in an Ataxia-Telangiectasia and Rad3-Related-Dependent Manner. Molecular Pharmacology, 2009, 75, 599-607.	2.3	39
70	Oncogenic Function of ATDC in Pancreatic Cancer through Wnt Pathway Activation and β-Catenin Stabilization. Cancer Cell, 2009, 15, 207-219.	16.8	197
71	Targeting the DNA Damage Response in Cancer. Chemical Reviews, 2009, 109, 2929-2950.	47.7	139
72	Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatin. Molecular Cancer, 2008, 7, 24.	19.2	47

#	Article	IF	CITATIONS
73	Cells From Long-Lived Mutant Mice Exhibit Enhanced Repair of Ultraviolet Lesions. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 219-231.	3.6	32
74	RPA and ATR link transcriptional stress to p53. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12778-12783.	7.1	109
75	H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis, 2007, 28, 2298-2304.	2.8	174
76	Compromised Fanconi anemia response due to BRCA1 deficiency in cisplatin-sensitive head and neck cancer cell lines. Cancer Letters, 2007, 253, 131-137.	7.2	21
77	The Transcription Stress Response. Cell Cycle, 2007, 6, 2252-2257.	2.6	56
78	Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation. International Journal of Radiation Oncology Biology Physics, 2007, 69, 214-220.	0.8	34
79	The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers. Molecular Cancer, 2006, 5, 25.	19.2	28
80	The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicology and Applied Pharmacology, 2005, 209, 1-9.	2.8	85
81	Activation of DNA damage signaling. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 577, 203-216.	1.0	44
82	Transcription inhibition: A potential strategy for cancer therapeutics. European Journal of Cancer, 2005, 41, 2569-2576.	2.8	28
83	Pifithrin-α Inhibits p53 Signaling after Interaction of the Tumor Suppressor Protein with hsp90 and Its Nuclear Translocation. Journal of Biological Chemistry, 2004, 279, 30195-30201.	3.4	100
84	Hsp90-binding Immunophilins Link p53 to Dynein During p53 Transport to the Nucleus. Journal of Biological Chemistry, 2004, 279, 22483-22489.	3.4	128
85	Transcription — guarding the genome by sensing DNA damage. Nature Reviews Cancer, 2004, 4, 727-737.	28.4	231
86	Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2. Oncogene, 2004, 23, 5505-5512.	5.9	40
87	Phosphorylation and nuclear accumulation are distinct events contributing to the activation of p53. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 546, 7-15.	1.0	17
88	Efficient NES-dependent protein nuclear export requires ongoing synthesis and export of mRNAs. Experimental Cell Research, 2004, 297, 548-559.	2.6	20
89	Potential role of MLH1 in the induction of p53 and apoptosis by blocking transcription on damaged DNA templates. Molecular Cancer Research, 2003, 1, 747-54.	3.4	39
90	Ultraviolet light-induced apoptosis is associated with S-phase in primary human fibroblasts. DNA Repair, 2002, 1, 811-820.	2.8	45

#	Article	IF	CITATIONS
91	Phenylbutyrate inhibits the invasive properties of prostate and breast cancer cell lines in the sea urchin embryo basement membrane invasion assay. International Journal of Cancer, 2002, 101, 496-499.	5.1	24
92	UV light-induced degradation of RNA polymerase II is dependent on the Cockayne's syndrome A and B proteins but not p53 or MLH1. Mutation Research DNA Repair, 2001, 485, 93-105.	3.7	57
93	Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells. Neoplasia, 2001, 3, 331-338.	5.3	39
94	Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation. Oncogene, 2001, 20, 5964-5971.	5.9	61
95	P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene, 2001, 20, 6805-6808.	5.9	98
96	Individual Variation in p53 Responsiveness. Journal of the National Cancer Institute, 2001, 93, 82-83.	6.3	7
97	The cyclin-dependent kinase inhibitor roscovitine inhibits RNA synthesis and triggers nuclear accumulation of p53 that is unmodified at Ser15 and Lys382. Molecular Pharmacology, 2001, 60, 785-9.	2.3	74
98	The Human Cdc14 Phosphatases Interact with and Dephosphorylate the Tumor Suppressor Protein p53. Journal of Biological Chemistry, 2000, 275, 2410-2414.	3.4	89
99	The Tumor Suppressor p53 Can Both Stimulate and Inhibit Ultraviolet Light–induced Apoptosis. Molecular Biology of the Cell, 2000, 11, 2543-2551.	2.1	47
100	Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress. Neoplasia, 2000, 2, 208-225.	5.3	188
101	Potential roles for p53 in nucleotide excision repair. Carcinogenesis, 1999, 20, 1389-1396.	2.8	55
102	Recovery of RNA synthesis from the DHFR gene following UV-irradiation precedes the removal of photolesions from the transcribed strand. Carcinogenesis, 1999, 20, 395-399.	2.8	22
103	Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene, 1999, 18, 583-592.	5.9	262
104	Role for p53 in the Recovery of Transcription and Protection Against Apoptosis Induced by Ultraviolet Light. Neoplasia, 1999, 1, 276-284.	5.3	52
105	Repair of Radiation-Induced DNA Strand Breaks Does Not Occur Preferentially in Transcriptionally Active DNA. Radiation Research, 1999, 152, 444.	1.5	22
106	Persistent DNA damage induced by ultraviolet light inhibits p21waf1 and bax expression: implications for DNA repair, UV sensitivity and the induction of apoptosis. Oncogene, 1998, 17, 545-555.	5.9	85
107	Butyrate Attenuates BCLX L Expression in Human Fibroblasts and Acts in Synergy with Ionizing Radiation to Induce Apoptosis. Radiation Research, 1998, 149, 187.	1.5	22
108	Effect of differential gene expression on the chromatin structure of the DHFR gene domain in vivo. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1307, 171-177.	2.4	4

#	Article	IF	CITATIONS
109	The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription. Carcinogenesis, 1996, 17, 31-36.	2.8	63
110	Efficient protection against oxidative DNA damage in chromatin. Molecular Carcinogenesis, 1992, 5, 264-269.	2.7	126
111	Pretreatment with UV light renders the chromatin in human fibroblasts more susceptible to the DNA-damaging agents bleomycin, gamma radiation and 8-methoxypsoralen. Carcinogenesis, 1989, 10, 447-451.	2.8	19
112	Effects of 3-aminobenzamide on the rejoining of DNA-strand breaks in mammalian cells exposed to methyl methanesulphonate; role of poly(ADP-ribose) polymerase. Mutation Research - DNA Repair Reports, 1988, 194, 17-22.	1.8	15