
Eve Syrkin Wurtele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 2004, 9, 418-425.	8.8	685
2	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	17.5	283
3	Plant biotin-containing carboxylases. Archives of Biochemistry and Biophysics, 2003, 414, 211-222.	3.0	208
4	Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature, 2012, 485, 530-533.	27.8	191
5	Reverse Genetic Characterization of Cytosolic Acetyl-CoA Generation by ATP-Citrate Lyase in Arabidopsis. Plant Cell, 2005, 17, 182-203.	6.6	185
6	Molecular Characterization of a Heteromeric ATP-Citrate Lyase That Generates Cytosolic Acetyl-Coenzyme A in Arabidopsis,. Plant Physiology, 2002, 130, 740-756.	4.8	183
7	Coming of age: orphan genes in plants. Trends in Plant Science, 2014, 19, 698-708.	8.8	158
8	The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds. Plant Physiology, 2000, 123, 497-508.	4.8	147
9	Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphiteâ€assisted laser desorption ionization mass spectrometry. Plant Journal, 2008, 55, 348-360.	5.7	138
10	Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Molecular Biology, 1988, 10, 401-412.	3.9	136
11	Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant Journal, 2009, 58, 485-498.	5.7	118
12	<i>QQS</i> orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14734-14739.	7.1	109
13	A global approach to analysis and interpretation of metabolic data for plant natural product discovery. Natural Product Reports, 2013, 30, 565.	10.3	104
14	Acetyl-CoA—Life at the metabolic nexus. Plant Science, 2009, 176, 597-601.	3.6	102
15	Plants contain multiple biotin enzymes: Discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate carboxylase in the plant kingdom. Archives of Biochemistry and Biophysics, 1990, 278, 179-186.	3.0	99
16	3-Methylcrotonyl-Coenzyme A Carboxylase Is a Component of the Mitochondrial Leucine Catabolic Pathway in Plants. Plant Physiology, 1998, 118, 1127-1138.	4.8	99
17	Coordinate Regulation of the Nuclear and Plastidic Genes Coding for the Subunits of the Heteromeric Acetyl-Coenzyme A Carboxylase. Plant Physiology, 2000, 122, 1057-1072.	4.8	99
18	Functional Genomics: High-Throughput mRNA, Protein, and Metabolite Analyses. Metabolic Engineering, 2002, 4, 98-106.	7.0	97

EVE SYRKIN WURTELE

#	Article	IF	CITATIONS
19	PlantMetabolomics.org: A Web Portal for Plant Metabolomics Experiments. Plant Physiology, 2010, 152, 1807-1816.	4.8	93
20	Regulon organization of Arabidopsis. BMC Plant Biology, 2008, 8, 99.	3.6	90
21	Articulation of three core metabolic processes in Arabidopsis: Fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC Plant Biology, 2008, 8, 76.	3.6	83
22	Use of streptavidin to detect biotin-containing proteins in plants. Analytical Biochemistry, 1985, 149, 448-453.	2.4	64
23	Reverse-Genetic Analysis of the Two Biotin-Containing Subunit Genes of the Heteromeric Acetyl-Coenzyme A Carboxylase in Arabidopsis Indicates a Unidirectional Functional Redundancy Â. Plant Physiology, 2011, 155, 293-314.	4.8	62
24	The <i>QQS</i> orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. Plant Biotechnology Journal, 2015, 13, 177-187.	8.3	62
25	Genomic Organization of 251 kDa Acetyl-CoA Carboxylase Genes in Arabidopsis: Tandem Gene Duplication has Made Two Differentially Expressed Isozymes. Plant and Cell Physiology, 1995, 36, 779-787.	3.1	59
26	MetNet: Software to Build and Model the Biogenetic Lattice ofArabidopsis. Comparative and Functional Genomics, 2003, 4, 239-245.	2.0	57
27	Modeling Gene Expression Networks Using Fuzzy Logic. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35, 1351-1359.	5.0	57
28	Subcellular and Developmental Distribution of β-Cyanoalanine Synthase in Barley Leaves. Plant Physiology, 1985, 78, 285-290.	4.8	55
29	Role of miR-2392 in driving SARS-CoV-2 infection. Cell Reports, 2021, 37, 109839.	6.4	52
30	Tissue Distribution of Acetyl-Coenzyme A Carboxylase in Leaves. Plant Physiology, 1984, 75, 895-901.	4.8	51
31	Metabolic and Environmental Regulation of 3-Methylcrotonyl-Coenzyme A Carboxylase Expression in Arabidopsis. Plant Physiology, 2002, 129, 625-637.	4.8	49
32	Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis Â. Plant Physiology, 2014, 165, 948-961.	4.8	49
33	AtRabD2b and AtRabD2c have overlapping functions in pollen development and pollen tube growth. BMC Plant Biology, 2011, 11, 25.	3.6	44
34	An mRNA that specifically accumulates in maize roots delineates a novel subset of developing cortical cells. Plant Molecular Biology, 1992, 20, 821-831.	3.9	43
35	ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Infection and Immunity, 2015, 83, 3545-3554.	2.2	41
36	Integration of metabolic networks and gene expression in virtual reality. Bioinformatics, 2005, 21, 3645-3650.	4.1	39

#	Article	IF	CITATIONS
37	Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis. Journal of Biological Chemistry, 2013, 288, 3163-3173.	3.4	39
38	A systems biology approach toward understanding seed composition in soybean. BMC Genomics, 2015, 16, S9.	2.8	39
39	Differential Accumulation of Biotin Enzymes during Carrot Somatic Embryogenesis. Plant Physiology, 1992, 99, 1699-1703.	4.8	37
40	A simple, efficient method for the Agrobacterium-mediated transformation of carrot callus cells. Plant Science, 1989, 61, 253-262.	3.6	36
41	Quantitative analysis of short-chain acyl-coenzymeAs in plant tissues by LC–MS–MS electrospray ionization method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 482-488.	2.3	36
42	Tissue Distribution of β-Cyanoalanine Synthase in Leaves. Plant Physiology, 1984, 75, 979-982.	4.8	35
43	orfipy: a fast and flexible tool for extracting ORFs. Bioinformatics, 2021, 37, 3019-3020.	4.1	35
44	Diacetylenic isobutylamides of Echinacea: synthesis and natural distribution. Phytochemistry, 2004, 65, 2477-2484.	2.9	32
45	Genome wide co-expression among the starch debranching enzyme genes AtISA1, AtISA2, and AtISA3 in Arabidopsis thaliana. Journal of Experimental Botany, 2007, 58, 3323-3342.	4.8	32
46	Medicinal Plants: A Public Resource for Metabolomics and Hypothesis Development. Metabolites, 2012, 2, 1031-1059.	2.9	32
47	<tt>phylostratr</tt> : a framework for phylostratigraphy. Bioinformatics, 2019, 35, 3617-3627.	4.1	32
48	Geranoyl-CoA Carboxylase: A Novel Biotin-Containing Enzyme in Plants. Archives of Biochemistry and Biophysics, 1999, 362, 12-21.	3.0	30
49	Year-and-a-Half Old, DriedEchinaceaRoots Retain Cytokine-Modulating Capabilities in anin vitroHuman Older Adult Model of Influenza Vaccination. Planta Medica, 2006, 72, 1207-1215.	1.3	30
50	Molecular Characterization of the Non-biotin-containing Subunit of 3-Methylcrotonyl-CoA Carboxylase. Journal of Biological Chemistry, 2000, 275, 5582-5590.	3.4	29
51	The Role of Biotin in Regulating 3-Methylcrotonyl-Coenzyme A Carboxylase Expression in Arabidopsis. Plant Physiology, 2003, 131, 1479-1486.	4.8	29
52	Identification and biosynthesis of acylphloroglucinols in <i>Hypericum gentianoides</i> . Physiologia Plantarum, 2013, 148, 354-370.	5.2	28
53	Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. International Journal of Molecular Sciences, 2017, 18, 958.	4.1	28
54	Abscisic acid is present in liverworts. Phytochemistry, 1994, 37, 625-627.	2.9	27

#	Article	IF	CITATIONS
55	How new genes are born. ELife, 2020, 9, .	6.0	25
56	MetNet: Systems Biology Tools for Arabidopsis. , 2007, , 145-157.		24
57	System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell Reports Medicine, 2022, 3, 100522.	6.5	24
58	Subcellular Localization of a UDP-Glucose:Aldehyde Cyanohydrin β-Glucosyl Transferase in Epidermal Plastids of <i>Sorghum</i> Leaf Blades. Plant Physiology, 1982, 70, 1732-1737.	4.8	22
59	Quantitation of Starch and ADP-Glucose Pyrophosphorylase in non-Embryogenic Cells and Embryogenic Cell Clusters from Carrot Suspension Cultures. Journal of Plant Physiology, 1988, 132, 683-689.	3.5	20
60	Modifications of membrane lipids in response to wounding of <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1056422.	2.4	20
61	Characterizing the Metabolic Fingerprint and Anti-inflammatory Activity ofHypericum gentianoides. Journal of Agricultural and Food Chemistry, 2008, 56, 4359-4366.	5.2	19
62	Metabolic Profiling ofEchinaceaGenotypes and a Test of Alternative Taxonomic Treatments. Planta Medica, 2009, 75, 178-183.	1.3	19
63	MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets. Nucleic Acids Research, 2020, 48, e23-e23.	14.5	19
64	Comparison of Starch and ADP-Glucose Pyrophosphorylase Levels in Nonembryogenic Cells and Developing Embryos from Induced Carrot Cultures. Plant Physiology, 1988, 86, 451-456.	4.8	18
65	Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data. Plant Science, 2018, 267, 32-47.	3.6	18
66	PubMed Assistant: a biologist-friendly interface for enhanced PubMed search. Bioinformatics, 2006, 22, 378-380.	4.1	17
67	MetNet Online: a novel integrated resource for plant systems biology. BMC Bioinformatics, 2012, 13, 267.	2.6	17
68	Subcellular distribution of acetyl-coenzyme A carboxylase in mesophyll cells of barley and sorghum leaves. Archives of Biochemistry and Biophysics, 1984, 235, 555-561.	3.0	16
69	fagin: synteny-based phylostratigraphy and finer classification of young genes. BMC Bioinformatics, 2019, 20, 440.	2.6	16
70	Massive Human Coâ€Expression Network and Its Medical Applications. Chemistry and Biodiversity, 2012, 9, 868-887.	2.1	15
71	Differentially Expressed Genes in Hypericin-Containing Hypericum perforatum Leaf Tissues as Revealed by De Novo Assembly of RNA-Seq. Plant Molecular Biology Reporter, 2016, 34, 1027-1041.	1.8	15
72	African Americans and European Americans exhibit distinct gene expression patterns across tissues and tumors associated with immunologic functions and environmental exposures. Scientific Reports, 2021, 11, 9905.	3.3	15

EVE SYRKIN WURTELE

#	Article	IF	CITATIONS
73	Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data. BMC Bioinformatics, 2013, 14, 214.	2.6	14
74	Identification and functional characterization of HbOsmotin from Hevea brasiliensis. Plant Physiology and Biochemistry, 2016, 109, 171-180.	5.8	14
75	<tt>pyrpipe</tt> : a Python package for RNA-Seq workflows. NAR Genomics and Bioinformatics, 2021, 3, lqab049.	3.2	14
76	Foster thy young: enhanced prediction of orphan genes in assembled genomes. Nucleic Acids Research, 2022, 50, e37-e37.	14.5	13
77	Accumulation of petroselinic acid in developing somatic carrot embryos. Phytochemistry, 1994, 37, 749-753.	2.9	11
78	Zrp2: a novel maize gene whose mRNA accumulates in the root cortex and mature stems. Plant Molecular Biology, 1997, 35, 367-375.	3.9	10
79	Hierarchical visualization of metabolic networks using virtual reality. , 2006, , .		10
80	PathBinder – text empirics and automatic extraction of biomolecular interactions. BMC Bioinformatics, 2009, 10, S18.	2.6	10
81	Holocarboxylase Synthetase 1 Physically Interacts with Histone H3 in <i>Arabidopsis</i> . Scientifica, 2013, 2013, 1-9.	1.7	10
82	Characterization of 3-Methylcrotonyl-CoA Carboxylase from Plants. Methods in Enzymology, 2000, 324, 280-292.	1.0	9
83	Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations. Plant Molecular Biology, 2018, 96, 509-529.	3.9	8
84	Propagation of an elite high biomass-producing genotype of Atriplex canescens by axillary enhancement. Bioresource Technology, 1987, 12, 281-291.	0.3	7
85	Landscape of the Dark Transcriptome Revealed Through Re-mining Massive RNA-Seq Data. Frontiers in Genetics, 2021, 12, 722981.	2.3	7
86	Creating, Modeling, and Visualizing Metabolic Networks. , 2005, , 491-518.		5
87	MetNetGE: Visualizing biological networks in hierarchical views and 3D tiered layouts. , 2009, , .		4
88	MetNetAPI: A flexible method to access and manipulate biological network data from MetNet. BMC Research Notes, 2010, 3, 312.	1.4	4
89	Automatic extraction of biomolecular interactions: an empirical approach. BMC Bioinformatics, 2013, 14, 234.	2.6	4
90	Tissue distribution of acetyl-CoA carboxylase in leaves of leek (Allium porrum L.). Journal of Plant Physiology, 1998, 153, 265-269.	3.5	3

EVE SYRKIN WURTELE

#	Article	IF	CITATIONS
91	Meta!Blast computer game: a pipeline from science to 3D art to education. , 2012, , .		3
92	Use of Metabolomics and Transcriptomics to Gain Insights into the Regulation and Biosynthesis of Medicinal Compounds: Hypericum as a Model. , 2013, , 395-411.		3
93	A <scp>ccumulation of the</scp> ZRP3 <scp>m</scp> RNA <scp>in the root and coleorhiza of germinating maize</scp> (<i>Z<scp>emays</scp></i> , P <scp>oaceae</scp>). American Journal of Botany, 1995, 82, 1083-1088.	1.7	2
94	Visualizing Multivariate Hierarchic Data Using Enhanced Radial Space-Filling Layout. Lecture Notes in Computer Science, 2010, , 350-360.	1.3	2
95	Accumulation of the ZRP3 mRNA in the Root and Coleorhiza of Germinating Maize (Zea mays, Poaceae). American Journal of Botany, 1995, 82, 1083.	1.7	1
96	Echinacea-induced cytosolic Ca2+ elevation in HEK293. BMC Complementary and Alternative Medicine, 2010, 10, 72.	3.7	1
97	BirdsEyeView (BEV): graphical overviews of experimental data. BMC Bioinformatics, 2012, 13, S11.	2.6	1
98	Biochemical and Molecular Biological Characterization of Biotinylated Proteins of Plants. , 1995, , 49-51.		0
99	Biochemical and Molecular Biological Characterization of Acetyl-CoA Carboxylases. , 1995, , 39-42.		Ο