Dong-Ming Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924434/publications.pdf

Version: 2024-02-01

201674 233421 4,339 47 27 45 citations h-index g-index papers 47 47 47 6751 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highâ€Purity Monochiral Carbon Nanotubes with a 1.2Ânm Diameter for Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2107119.	14.9	16
2	Laminated three-dimensional carbon nanotube integrated circuits. Nanoscale, 2022, 14, 7049-7054.	5.6	1
3	Patterning of Waferâ€Scale MXene Films for Highâ€Performance Image Sensor Arrays. Advanced Materials, 2022, 34, e2201298.	21.0	26
4	A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler. Light: Science and Applications, 2022, 11, 48.	16.6	7
5	A photon-controlled diode with a new signal-processing behavior. National Science Review, 2022, 9, .	9.5	2
6	Fermiâ€Level Depinning in Metal/Ge Junctions by Inserting a Carbon Nanotube Layer. Small, 2022, 18, e2201840.	10.0	5
7	High-performance gold/graphene/germanium photodetector based on a graphene-on-germanium wafer. Nanotechnology, 2022, 33, 345204.	2.6	4
8	Key factors for ultra-high on/off ratio thin-film transistors using as-grown carbon nanotube networks. RSC Advances, 2022, 12, 16291-16295.	3.6	5
9	Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots. ACS Nano, 2022, 16, 9041-9048.	14.6	7
10	Preparation of isolated semiconducting single-wall carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. Chemical Engineering Journal, 2022, 450, 137861.	12.7	7
11	High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale, 2021, 13, 2448-2455.	5.6	12
12	A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nature Communications, 2021, 12, 1798.	12.8	198
13	Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Science China Information Sciences, 2021, 64, 1.	4.3	35
14	Small-Hysteresis Flexible Carbon Nanotube Thin-Film Transistors using Stacked Architecture. , 2021, , .		0
15	An ultrasensitive molybdenum-based double-heterojunction phototransistor. Nature Communications, 2021, 12, 4094.	12.8	37
16	A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability. Journal of Materials Science and Technology, 2021, 86, 151-157.	10.7	18
17	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 , 25991 - 25998 .	7.1	28
18	Chemical vapor deposition of layered two-dimensional MoSi ₂ N ₄ materials. Science, 2020, 369, 670-674.	12.6	556

#	Article	IF	CITATIONS
19	A FinFET with one atomic layer channel. Nature Communications, 2020, 11, 1205.	12.8	83
20	A Flexible Carbon Nanotube Senâ€Memory Device. Advanced Materials, 2020, 32, e1907288.	21.0	48
21	A Graphene Base Transistor for Potential Terahertz Application. , 2020, , .		0
22	Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nature Communications, 2019, 10, 4854.	12.8	43
23	A vertical silicon-graphene-germanium transistor. Nature Communications, 2019, 10, 4873.	12.8	37
24	Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nature Communications, 2019, 10, 2302.	12.8	72
25	Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nature Communications, 2019, 10, 2809.	12.8	43
26	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	14.6	29
27	Flexible 64 × 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Driven School 11, 11699-11705.	8.0	33
28	Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nature Materials, 2019, 18, 62-68.	27. 5	316
29	Highâ€Throughput Fabrication of Flexible and Transparent Allâ€Carbon Nanotube Electronics. Advanced Science, 2018, 5, 1700965.	11.2	34
30	Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 2018, 4, eaap9264.	10.3	178
31	High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance. Micromachines, 2018, 9, 640.	2.9	35
32	UV-Epoxy-Enabled Simultaneous Intact Transfer and Highly Efficient Doping for Roll-to-Roll Production of High-Performance Graphene Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40756-40763.	8.0	18
33	Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nature Nanotechnology, 2018, 13, 554-559.	31.5	466
34	Continuous Fabrication of Meterâ€Scale Singleâ€Wall Carbon Nanotube Films and their Use in Flexible and Transparent Integrated Circuits. Advanced Materials, 2018, 30, e1802057.	21.0	63
35	Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1605451.	21.0	8
36	A carbon nanotube non-volatile memory device using a photoresist gate dielectric. Carbon, 2017, 124, 700-707.	10.3	10

#	Article	IF	CITATIONS
37	Selective Growth of Metalâ€Free Metallic and Semiconducting Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2017, 29, 1605719.	21.0	21
38	Ultrafast Growth of Highâ€Quality Monolayer WSe ₂ on Au. Advanced Materials, 2017, 29, 1700990.	21.0	139
39	Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nature Communications, 2017, 8, 970.	12.8	68
40	Allâ€Carbon Thinâ€Film Transistors as a Step Towards Flexible and Transparent Electronics. Advanced Electronic Materials, 2016, 2, 1600229.	5.1	32
41	Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nature Communications, 2016, 7, 11160.	12.8	75
42	Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015, 6, 8569.	12.8	336
43	Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4, 2302.	12.8	141
44	Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Research, 2013, 6, 842-852.	10.4	68
45	A Review of Carbon Nanotube―and Grapheneâ€Based Flexible Thinâ€Film Transistors. Small, 2013, 9, 1188-1205.	10.0	268
46	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	10.4	59
47	Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 2011, 6, 156-161.	31.5	652