
Dong-Ming Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924434/publications.pdf Version: 2024-02-01

DONG-MING SUN

#	Article	IF	CITATIONS
1	Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 2011, 6, 156-161.	31.5	652
2	Chemical vapor deposition of layered two-dimensional MoSi ₂ N ₄ materials. Science, 2020, 369, 670-674.	12.6	556
3	Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nature Nanotechnology, 2018, 13, 554-559.	31.5	466
4	Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015, 6, 8569.	12.8	336
5	Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nature Materials, 2019, 18, 62-68.	27.5	316
6	A Review of Carbon Nanotube―and Grapheneâ€Based Flexible Thinâ€Film Transistors. Small, 2013, 9, 1188-1205.	10.0	268
7	A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nature Communications, 2021, 12, 1798.	12.8	198
8	Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 2018, 4, eaap9264.	10.3	178
9	Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4, 2302.	12.8	141
10	Ultrafast Growth of Highâ€Quality Monolayer WSe ₂ on Au. Advanced Materials, 2017, 29, 1700990.	21.0	139
11	A FinFET with one atomic layer channel. Nature Communications, 2020, 11, 1205.	12.8	83
12	Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nature Communications, 2016, 7, 11160.	12.8	75
13	Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nature Communications, 2019, 10, 2302.	12.8	72
14	Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Research, 2013, 6, 842-852.	10.4	68
15	Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nature Communications, 2017, 8, 970.	12.8	68
16	Continuous Fabrication of Meterâ€Scale Singleâ€Wall Carbon Nanotube Films and their Use in Flexible and Transparent Integrated Circuits. Advanced Materials, 2018, 30, e1802057.	21.0	63
17	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	10.4	59
18	A Flexible Carbon Nanotube Senâ€Memory Device. Advanced Materials, 2020, 32, e1907288.	21.0	48

Dong-Ming Sun

#	Article	IF	CITATIONS
19	Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nature Communications, 2019, 10, 4854.	12.8	43
20	Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nature Communications, 2019, 10, 2809.	12.8	43
21	A vertical silicon-graphene-germanium transistor. Nature Communications, 2019, 10, 4873.	12.8	37
22	An ultrasensitive molybdenum-based double-heterojunction phototransistor. Nature Communications, 2021, 12, 4094.	12.8	37
23	High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance. Micromachines, 2018, 9, 640.	2.9	35
24	Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Science China Information Sciences, 2021, 64, 1.	4.3	35
25	Highâ€Throughput Fabrication of Flexible and Transparent All arbon Nanotube Electronics. Advanced Science, 2018, 5, 1700965.	11.2	34
26	Flexible 64 × 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 11699-11705.	8.0	33
27	Allâ€Carbon Thinâ€Film Transistors as a Step Towards Flexible and Transparent Electronics. Advanced Electronic Materials, 2016, 2, 1600229.	5.1	32
28	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	14.6	29
29	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25991-25998.	7.1	28
30	Patterning of Waferâ€6cale MXene Films for Highâ€Performance Image Sensor Arrays. Advanced Materials, 2022, 34, e2201298.	21.0	26
31	Selective Growth of Metalâ€Free Metallic and Semiconducting Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2017, 29, 1605719.	21.0	21
32	UV-Epoxy-Enabled Simultaneous Intact Transfer and Highly Efficient Doping for Roll-to-Roll Production of High-Performance Graphene Films. ACS Applied Materials & Interfaces, 2018, 10, 40756-40763.	8.0	18
33	A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability. Journal of Materials Science and Technology, 2021, 86, 151-157.	10.7	18
34	Highâ€Purity Monochiral Carbon Nanotubes with a 1.2Ânm Diameter for Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2107119.	14.9	16
35	High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale, 2021, 13, 2448-2455.	5.6	12
36	A carbon nanotube non-volatile memory device using a photoresist gate dielectric. Carbon, 2017, 124, 700-707.	10.3	10

Dong-Ming Sun

#	Article	IF	CITATIONS
37	Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1605451.	21.0	8
38	A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler. Light: Science and Applications, 2022, 11, 48.	16.6	7
39	Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots. ACS Nano, 2022, 16, 9041-9048.	14.6	7
40	Preparation of isolated semiconducting single-wall carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. Chemical Engineering Journal, 2022, 450, 137861.	12.7	7
41	Fermi‣evel Depinning in Metal/Ge Junctions by Inserting a Carbon Nanotube Layer. Small, 2022, 18, e2201840.	10.0	5
42	Key factors for ultra-high on/off ratio thin-film transistors using as-grown carbon nanotube networks. RSC Advances, 2022, 12, 16291-16295.	3.6	5
43	High-performance gold/graphene/germanium photodetector based on a graphene-on-germanium wafer. Nanotechnology, 2022, 33, 345204.	2.6	4
44	A photon-controlled diode with a new signal-processing behavior. National Science Review, 2022, 9, .	9.5	2
45	Laminated three-dimensional carbon nanotube integrated circuits. Nanoscale, 2022, 14, 7049-7054.	5.6	1
46	Small-Hysteresis Flexible Carbon Nanotube Thin-Film Transistors using Stacked Architecture. , 2021, , .		0
47	A Graphene Base Transistor for Potential Terahertz Application. , 2020, , .		0