
Azusa Kamikouchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7924378/publications.pdf Version: 2024-02-01

Αγμελ Κλωικομομι

#	Article	IF	CITATIONS
1	Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cellular and Molecular Life Sciences, 2021, 78, 4805-4819.	5.4	6
2	Loss of <i>Fis1</i> impairs proteostasis during skeletal muscle aging in <i>Drosophila</i> . Aging Cell, 2021, 20, e13379.	6.7	12
3	A Feedforward Circuit Regulates Action Selection of Pre-mating Courtship Behavior in Female Drosophila. Current Biology, 2020, 30, 396-407.e4.	3.9	33
4	Wiring patterns from auditory sensory neurons to the escape and songâ€relay pathways in fruit flies. Journal of Comparative Neurology, 2020, 528, 2068-2098.	1.6	16
5	Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. ELife, 2020, 9, .	6.0	15
6	Drosophila as a Model for Hearing and Deafness. , 2020, , 985-1004.		3
7	STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior. Frontiers in Neuroscience, 2019, 13, 626.	2.8	8
8	A single male auditory response test to quantify auditory behavioral responses in <i>Drosophila melanogaster</i> . Journal of Neurogenetics, 2019, 33, 64-74.	1.4	6
9	Softness sensing and learning in Drosophila larvae. Journal of Experimental Biology, 2019, 222, .	1.7	10
10	Stereotyped Combination of Hearing and Wind/Gravity-Sensing Neurons in the Johnston's Organ of Drosophila. Frontiers in Physiology, 2019, 10, 1552.	2.8	11
11	GABAergic Local Interneurons Shape Female Fruit Fly Response to Mating Songs. Journal of Neuroscience, 2018, 38, 4329-4347.	3.6	31
12	Auditory experience controls the maturation of song discrimination and sexual response in Drosophila. ELife, 2018, 7, .	6.0	36
13	Assessing Experience-dependent Tuning of Song Preference in Fruit Flies (Drosophila melanogaster). Bio-protocol, 2018, 8, .	0.4	2
14	Assessing Experience-dependent Tuning of Song Preference inFruit Flies (). Bio-protocol, 2018, 8, e2932.	0.4	1
15	Anatomic and Physiologic Heterogeneity of Subgroup-A Auditory Sensory Neurons in Fruit Flies. Frontiers in Neural Circuits, 2017, 11, 46.	2.8	25
16	Organization of projection neurons and local neurons of the primary auditory center in the fruit fly <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2016, 524, 1099-1164.	1.6	61
17	Organization of projection neurons and local neurons of the primary auditory center in the fruit fly <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2016, 524, Spc1.	1.6	0
18	Hearing in Drosophila. Springer Handbook of Auditory Research, 2016, , 239-262.	0.7	17

Azusa Камікоисні

#	Article	IF	CITATIONS
19	Auditory system of fruit flies. Hearing Research, 2016, 338, 1-8.	2.0	21
20	Auditory Transduction. Springer Handbook of Auditory Research, 2016, , 159-175.	0.7	4
21	The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster. PLoS Genetics, 2015, 11, e1005209.	3.5	143
22	Identification of novel vibration- and deflection-sensitive neuronal subgroups in Johnston's organ of the fruit fly. Frontiers in Physiology, 2014, 5, 179.	2.8	41
23	Neuronal encoding of sound, gravity, and wind in the fruit fly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 253-262.	1.6	31
24	Auditory neuroscience in fruit flies. Neuroscience Research, 2013, 76, 113-118.	1.9	18
25	Selectivity and Plasticity in a Sound-Evoked Male-Male Interaction in Drosophila. PLoS ONE, 2013, 8, e74289.	2.5	28
26	Monitoring Neural Activity with Genetically Encoded Ca2+ Indicators. , 2013, , 103-114.		1
27	The auditory map in the fly brain. Neuroscience Research, 2011, 71, e21-e22.	1.9	Ο
28	Protocol for quantifying sound-sensing ability of Drosophila melanogaster. Nature Protocols, 2010, 5, 26-30.	12.0	16
29	Transcuticular optical imaging of stimulus-evoked neural activities in the Drosophila peripheral nervous system. Nature Protocols, 2010, 5, 1229-1235.	12.0	18
30	Mechanical feedback amplification in <i>Drosophila</i> hearing is independent of synaptic transmission. European Journal of Neuroscience, 2010, 31, 697-703.	2.6	29
31	Analysis of the <i>Drosophila</i> Gravity- and Sound-sensing Systems. Seibutsu Butsuri, 2010, 50, 282-285.	0.1	0
32	Methods for quantifying simple gravity sensing in Drosophila melanogaster. Nature Protocols, 2010, 5, 20-25.	12.0	37
33	The neural basis of Drosophila gravity-sensing and hearing. Nature, 2009, 458, 165-171.	27.8	347
34	Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature, 2009, 458, 201-205.	27.8	232
35	Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology, 2006, 15, 563-576.	2.0	131
36	Specification of auditory sensitivity by Drosophila TRP channels. Nature Neuroscience, 2006, 9, 999-1000.	14.8	154

Azusa Камікоисні

#	Article	IF	CITATIONS
37	Comprehensive classification of the auditory sensory projections in the brain of the fruit flyDrosophila melanogaster. Journal of Comparative Neurology, 2006, 499, 317-356.	1.6	207
38	Analysis of the distribution of the brain cells of the fruit fly by an automatic cell counting algorithm. Physica A: Statistical Mechanics and Its Applications, 2005, 350, 144-149.	2.6	32
39	Identification of Honeybee Antennal Proteins/Genes Expressed in a Sex- and/or Caste Selective Manner. Zoological Science, 2004, 21, 53-62.	0.7	40
40	Identification and punctate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain. Rna, 2002, 8, 772-785.	3.5	50
41	Identification of genes expressed preferentially in the honeybee mushroom bodies by combination of differential display and cDNA microarray 1. FEBS Letters, 2002, 513, 230-234.	2.8	48
42	Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain. Insect Molecular Biology, 2001, 10, 487-494.	2.0	70
43	Concentrated expression of Ca2+/calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybeeApis mellifera L , 2000, 417, 501-510.		60
44	Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera:) Tj ETQq0 C 96, 13874-13879.	0 rgBT /C 7.1	overlock 10 Tr 94
45	Identification and analysis of the gene which selectively appears to the mushroom body of the honeybee Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 1999, 16, 266-277.	0.0	0
46	Preferential Expression of the Gene for a Putative Inositol 1,4,5-Trisphosphate Receptor Homologue in the Mushroom Bodies of the Brain of the Worker HoneybeeApis melliferaL Biochemical and Biophysical Research Communications, 1998, 242, 181-186.	2.1	67
47	Mechanical tracing of protein function in the Drosophila ear. Protocol Exchange, 0, , .	0.3	11
48	Mate Discrimination of ColocasiomyiaÂxenalocasiae and C. alocasiae (Diptera: Drosophilidae) as a Possible Factor Contributing to their Co-Existence on the Same Host Plant. Journal of Insect Behavior, 0, , .	0.7	0